Isolation of Kaurene Synthase-like ( Gene Promoter and Its Regulation by Ethephon and Yeast Extract.

Genes (Basel)

Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland.

Published: December 2022

The presented study describes the regulation of the promoter region of the kaurene synthase-like gene () by ethylene and yeast extract. The isolated fragment is 897 bp and is composed of a promoter (763 bp), 5'UTR (109 bp), and a short CDS (25 bp). The initial in silico analysis revealed the presence of numerous putative active sites for -factors responding to different stress conditions. However, this study examines the influence of ethylene and yeast extract on gene expression and tanshinone biosynthesis regulation. The results of 72h RT-PCR indicate an antagonistic interaction between ethylene, provided as ethephon (0.05, 0.10, 0.25, and 0.50 mM), and yeast extract (0.5%) on gene expression in callus cultures of . A similar antagonistic effect was observed on total tanshinone concentration for up to 60 days. Ethylene provided as ethephon (0.05, 0.10, 0.25, and 0.50 mM) is a weak inducer of total tanshinone biosynthesis, increasing them only up to the maximum value of 0.67 ± 0.04 mg g DW (60-day induction with 0.50 mM ethephon). Among the tanshinones elicited by ethephon, cryptotanshinone (52.21%) dominates, followed by dihydrotanshinone (45.00%) and tanshinone IIA (3.79%). In contrast, the 0.5% yeast extract strongly increases the total tanshinone concentration up to a maximum value of 13.30 ± 1.09 mg g DW, observed after 50 days of induction. Yeast extract and ethylene appear to activate different fragments of the tanshinone biosynthesis route; hence the primary tanshinones induced by yeast extract were cryptotanshinone (81.42%), followed by dihydrotanshinone (17.06%) and tanshinone IIA (1.52%).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859234PMC
http://dx.doi.org/10.3390/genes14010054DOI Listing

Publication Analysis

Top Keywords

yeast extract
28
tanshinone biosynthesis
12
total tanshinone
12
kaurene synthase-like
8
synthase-like gene
8
ethylene yeast
8
gene expression
8
ethylene provided
8
provided ethephon
8
ethephon 005
8

Similar Publications

Fungal lignocellulolytic enzymes: an in silico and full factorial design approach.

World J Microbiol Biotechnol

January 2025

Graduate Program in Bioscience Technologies, Universidade Tecnológica Federal do Paraná, Toledo, Paraná, Brazil.

Efficient degradation of lignocellulosic biomass is key for the production of value-added products, contributing to sustainable and renewable solutions. This study employs a two-step approach to evaluate lignocellulolytic enzymes of Ceratocystis paradoxa, Colletotrichum falcatum, and Sporisorium scitamineum. First, an in silico genomic analysis was conducted to predict the potential enzyme groups produced by these fungi.

View Article and Find Full Text PDF

According to the Humane Society, 25 to 40 percent of pet dogs in the United States are adopted from animal shelters. Shelter dogs can harbor bacterial, viral, fungal, and protozoal pathogens, posing risks to canine and human health. These bacterial pathogens may also carry antibiotic resistance genes (ARGs), serving as a reservoir for antimicrobial resistance (AMR) transmission.

View Article and Find Full Text PDF

Enhanced MICP for Soil Improvement and Heavy Metal Remediation: Insights from Landfill Leachate-Derived Ureolytic Bacterial Consortium.

Microorganisms

January 2025

Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China.

This study investigates the potential of microbial-induced calcium carbonate precipitation (MICP) for soil stabilization and heavy metal immobilization, utilizing landfill leachate-derived ureolytic consortium. Experimental conditions identified yeast extract-based media as most effective for bacterial growth, urease activity, and calcite formation compared to nutrient broth and brown sugar media. Optimal MICP conditions, at pH 8-9 and 30 °C, supported the most efficient biomineralization.

View Article and Find Full Text PDF

strain PJH16, isolated and tested by our team, suppresses cucumber wilt as an efficient biocontrol agent. For further investigation, the strain has been combined with two other ( VJH504 and JNF2) to enhance biocontrol ability, which formed high-efficiency microbial agents in the current study. The methodological target taken is based on achieving the optimal growth conditions of the combined microbial agents; hence, the medium composition and culture conditions were optimized through a single-factor test, orthogonal test and response surface methodology.

View Article and Find Full Text PDF

type F is a spore-forming bacterium that causes human illnesses, including food poisoning (FP) and non-foodborne gastrointestinal diseases. In this study, we evaluated the antimicrobial activities of 15 natural products against spore growth. Among them, garlic, onion juice, and undiluted essential oil constituents (EOCs) of clove, rosemary, and peppermint showed the strongest activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!