The aerodynamic size distributions of short-lived Rn daughters (reported as 214Pb and 212Pb) in ambient aerosol particles were measured using low-pressure as well as conventional low-volume and high-volume impactors. The activity distribution of 214Pb and 212Pb, measured by alpha spectroscopy, was largely associated with submicron aerosols in the accumulation mode (0.08 to 2 microns). The activity median aerodynamic diameter ranged from 0.09 to 0.37 micron (mean 0.16 micron) for 214Pb and from 0.07 to 0.25 micron (mean 0.13 micron) for 212Pb. The mean values of the geometric standard deviation (sigma g) were 2.97 and 2.86, respectively. By comparison, the median diameters of cosmogenic 7Be and ambient SO4(2-) were about 0.24 micron higher. In almost 70% of the low-pressure impactor measurements, the activity distribution of 214Pb showed a small shift to larger particle sizes relative to 212Pb. This shift probably results from alpha-recoil detachment of parent 218Po, which preferentially depletes 214Pb from smaller particles. The subsequent recondensation of 214Pb causes an enrichment of larger aerosols. Early morning and afternoon measurements indicated that similar size associations of 214Pb occur, despite humidity differences and the potential for fresh particle production in the afternoon. Health physics implications of the results are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00004032-198711000-00003 | DOI Listing |
J Phys Chem B
January 2025
Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States.
Capillary vibrating sharp-edge spray ionization (cVSSI) has been used to control the droplet charging of nebulized microdroplets and monitor effects on protein ion conformation makeup as determined by mass spectrometry (MS). Here it is observed that the application of voltage results in noticeable differences to the charge state distributions (CSDs) of ubiquitin ions. The data can be described most generally in three distinct voltage regions: Under low-voltage conditions (<+200 V, LV regime), low charge states (2+ to 4+ ions) dominate the mass spectra.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Department of Chemistry, Universitas Indonesia, Depok, 16424, Indonesia.
To investigate the potential of activated carbon from palm kernel shell waste for Tc-radiolabeled nanocarbon aerosol, a new production technology for carbon-based Tc-radioaerosol from such a waste was developed. Treated-palm shell charcoal (t-PSC) was prepared by hydrothermal method to increase the surface area, followed by Tc radiolabelling optimization. The optimal Tc radiolabeling conditions resulted in an adsorption capacity of 21.
View Article and Find Full Text PDFInt J Pharm
January 2025
CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Kusudama Therapeutics SA, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Biogipuzkoa Health Research Institute, Group of Innovation, 20014 San Sebastian, Spain.
Cystic fibrosis (CF) is characterized by abnormal mucus hydration due to a defective CF Transmembrane Regulator (CFTR) protein, leading to the production of difficult-to-clear mucus. This causes airflow obstruction, recurrent infections, and respiratory complications. Chronic lung infections are the leading cause of death for CF patients and inhaled tobramycin is the first-in-line antibiotic treatment against these infections, mainly caused by Pseudomonas aeruginosa in adult patients.
View Article and Find Full Text PDFPharmaceutics
January 2025
College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
/: Inhaler devices have been developed for the effective delivery of inhaled medications used in the treatment of pulmonary diseases. However, differing operating procedures across the devices can lead to user errors and reduce treatment efficacy, especially when patients use multiple devices simultaneously. To address this, we developed a novel dry powder inhaler (DPI), combining fluticasone propionate (FP), salmeterol xinafoate (SX), and tiotropium bromide (TB) into a single device designed for bioequivalent delivery compared to existing commercial products in an animal model.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
Dry powder inhalers (DPI's) are becoming increasingly popular due to growing interest in pulmonary drug delivery and their performance is the net result of a series of processes carried out during the formulation development and manufacturing process such as excipient selection, blending, milling, filling, and spray drying. To reach the small airways of the deep lung, the active pharmaceutical ingredients (API) particles need to have an aerodynamic diameter of 1-5 μm to avoid impaction and particle sedimentation in the upper respiratory tract, and due to this small particle size, the powder becomes highly cohesive resulting in poor flow. Therefore, API is usually blended with a coarse carrier to improve flowability, and due to its large size, it is more fluidizable than the micronized drug.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!