Vestibular schwannoma is the most common benign neoplasm of the cerebellopontine angle. It arises from Schwann cells of the vestibular nerve. The first symptoms of vestibular schwannoma include hearing loss, tinnitus, and vestibular symptoms. In the event of further growth, cerebellar and brainstem symptoms, along with palsy of the adjacent cranial nerves, may be present. Although hearing impairment is present in 95% of patients diagnosed with vestibular schwannoma, most tumors do not progress in size or have low growth rates. However, the clinical picture has unpredictable dynamics, and there are currently no reliable predictors of the tumor's behavior. The etiology of the hearing loss in patients with vestibular schwannoma is unclear. Given the presence of hearing loss in patients with non-growing tumors, a purely mechanistic approach is insufficient. A possible explanation for this may be that the function of the auditory system may be affected by the paracrine activity of the tumor. Moreover, initiation of the development and growth progression of vestibular schwannomas is not yet clearly understood. Biallelic loss of the gene does not explain the occurrence in all patients; therefore, detection of gene expression abnormalities in cases of progressive growth is required. As in other areas of cancer research, the tumor microenvironment is coming to the forefront, also in vestibular schwannomas. In the paradigm of the tumor microenvironment, the stroma of the tumor actively influences the tumor's behavior. However, research in the area of vestibular schwannomas is at an early stage. Thus, knowledge of the molecular mechanisms of tumorigenesis and interactions between cells present within the tumor is crucial for the diagnosis, prediction of tumor behavior, and targeted therapeutic interventions. In this review, we provide an overview of the current knowledge in the field of molecular biology and tumor microenvironment of vestibular schwannomas, as well as their relationship to tumor growth and hearing loss.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856152 | PMC |
http://dx.doi.org/10.3390/biomedicines11010032 | DOI Listing |
Worldwide, congenital deafness and pigmentation disorders impact millions with their diverse manifestations, and among these genetic conditions, mutations in the Microphthalmia-associated transcription factor (MITF: OMIM#156845) gene are notable for their profound effects on melanocyte development and auditory functions. This study reports a novel porcupine model exhibiting spontaneous deafness and pigmentation abnormalities reminiscent of human Waardenburg Syndrome Type 2 (WS2: OMIM#193510). Through phenotypic characterization, including coat color, skin, eye morphology, and auditory brainstem response (ABR) assessments, we identified hypopigmentation and complete deafness in mutant porcupines.
View Article and Find Full Text PDFInt J Pediatr Otorhinolaryngol
December 2024
Hacettepe University, Faculty of Medicine, Department of Opthalmology, Ankara, Turkey.
Aims And Objectives: This study aimed to investigate the presence, type, and severity of hearing losses in individuals with Duane Retraction Syndrome (DRS), and to ascertain if there are anomalies in the auditory pathways at the brainstem level in DRS, believed to arise from aberrant interaction between cranial nerves and brainstem nuclei.
Study Design: Cross-sectional observational study.
Setting: Tertiary referral centre.
Zh Nevrol Psikhiatr Im S S Korsakova
December 2024
Bochkov Research Centre for Medical Genetics, Moscow, Russia.
A fifth world case of autosomal recessive Siddiqi syndrome (SIDDIS) related to ene is presented. In a consanguineous Lezgin (a Dagestan ethnicity) family, there were two affected brothers aged 28 yrs (proband, personally examined) and 32 yrs. Whole-exome sequencing followed by familial Sanger sequencing detected a novel missence variant c.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
December 2024
Federal Center of Brain Research and Neurotechnologies, Moscow, Russia.
According to the literature, a number of anti-epileptic drugs (AEDs) have an ototoxic effect. The mechanism of hearing dysfunction due to the use of AEDs is not well known. The main clinical manifestations of the cochleotoxic effect of the drugs are: tinnitus, sensorineural hearing loss, impaired pitch perception, hyperacusis.
View Article and Find Full Text PDFBMC Musculoskelet Disord
December 2024
Physical medicine & rehabilitation research center, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Pompe disease is a glycogen storage disease primarily affecting striated muscles. Despite its main manifestation in muscles, patients with Pompe disease may exhibit non-muscle symptoms, such as hearing loss, suggesting potential involvement of sensory organs or the nervous system due to glycogen accumulation.
Aims: This study aimed to evaluate the presence of concomitant small and large fiber neuropathy in patients with Pompe disease.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!