Ovarian cancer (OC) is the leading cause of death from gynecological malignancies. Despite great advances in treatment strategies, therapeutic resistance and the gap between preclinical data and actual clinical efficacy justify the necessity of developing novel models for investigating OC. Organoids represent revolutionary three-dimensional cell culture models, deriving from stem cells and reflecting the primary tissue's biology and pathology. The aim of the current review is to study the current status of mouse- and patient-derived organoids, as well as their potential to model carcinogenesis and perform drug screenings for OC. Herein, we describe the role of organoids in the assessment of high-grade serous OC (HGSOC) cells-of-origin, illustrate their use as promising preclinical OC models and highlight the advantages of organoid technology in terms of disease modelling and drug sensitivity testing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855526 | PMC |
http://dx.doi.org/10.3390/biomedicines11010001 | DOI Listing |
Neuro Oncol
January 2025
Childhood Cancer & Cell Death team (C3 team), Consortium South-ROCK, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France.
Background: Brain tumors are the deadliest solid tumors in children and adolescents. Most of these tumors are glial in origin and exhibit strong heterogeneity, hampering the development of effective therapeutic strategies. In the past decades, patient-derived tumor organoids (PDT-O) have emerged as powerful tools for modeling tumoral cell diversity and dynamics, and they could then help defining new therapeutic options for pediatric brain tumors.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Psychiatry and Psychotherapy, University Medical Center Mainz, 55131, Mainz, Germany.
Background: Recent research indicates a role of gut microbiota in development and progression of life-threatening diseases such as cancer. Carcinomas of the biliary ducts, the so-called cholangiocarcinomas, are known for their aggressive tumor biology, implying poor prognosis of affected patients. An impact of the gut microbiota on cholangiocarcinoma development and progression is plausible due to the enterohepatic circulation and is therefore the subject of scientific debate, however evidence is still lacking.
View Article and Find Full Text PDFJ Hepatol
January 2025
Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China. Electronic address:
Background & Aims: The ubiquitin receptor ADRM1/Rpn13 governs the specificity of eukaryotic protein degradation. By SMRT sequencing, we first discovered a novel spliced variant of ADRM1 with a skipped exon 9, termed ADRM1-ΔEx9, in human hepatocellular carcinoma (HCC). This study aimed to elucidate this novel ubiquitin receptor's underlying biology and clinical implications in HCC.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany.
Oral squamous cell carcinoma (OSCC) is the most common form of head and neck cancer. The current standard for treating primary OSCC is surgical resection combined with radiotherapy and chemotherapy. Despite improved therapeutic strategies, OSCC has high rates of metastasis and mortality, with one in two patients dying of the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!