Epithelial ovarian cancer (OC) is the most lethal gynecological malignancy worldwide due to a late diagnosis caused by the lack of specific symptoms and rapid dissemination into the peritoneal cavity. The standard of care for OC treatment is surgical cytoreduction followed by platinum-based chemotherapy. While a response to this frontline treatment is common, most patients undergo relapse within 2 years and frequently develop a chemoresistant disease that has become unresponsive to standard treatments. Moreover, also due to the lack of actionable mutations, very few alternative therapeutic strategies have been designed as yet for the treatment of recurrent OC. This dismal clinical perspective raises the need for pre-clinical models that faithfully recapitulate the original disease and therefore offer suitable tools to design novel therapeutic approaches. In this regard, patient-derived models are endowed with high translational relevance, as they can better capture specific aspects of OC such as (i) the high inter- and intra-tumor heterogeneity, (ii) the role of cancer stem cells (a small subset of tumor cells endowed with tumor-initiating ability, which can sustain tumor spreading, recurrence and chemoresistance), and (iii) the involvement of the tumor microenvironment, which interacts with tumor cells and modulates their behavior. This review describes the different in vitro patient-derived models that have been developed in recent years in the field of OC research, focusing on their ability to recapitulate specific features of this disease. We also discuss the possibilities of leveraging such models as personalized platforms to design new therapeutic approaches and guide clinical decisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856518PMC
http://dx.doi.org/10.3390/cancers15020368DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
8
therapeutic approaches
8
patient-derived models
8
tumor cells
8
models
5
patient-derived vitro
4
vitro models
4
models ovarian
4
cancer powerful
4
powerful tools
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!