A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chloroquine Enhances Death in Lung Adenocarcinoma A549 Cells Exposed to Cold Atmospheric Plasma Jet. | LitMetric

AI Article Synopsis

  • Cold atmospheric plasma (CAP) shows potential in treating cancer by selectively targeting malignant cells while sparing healthy cells, though the exact mechanisms of interaction are not fully understood.
  • In experiments with lung cancer cell lines, CAP treatment significantly reduced cancer cell viability while only slightly affecting healthy lung cells, suggesting a semi-selective approach to treatment.
  • The study found that combining CAP with the autophagy inhibitor chloroquine (CQ) enhanced cancer cell death by disrupting mitochondrial function and autophagy processes, indicating a promising direction for future cancer therapies.

Article Abstract

Cold atmospheric plasma (CAP) is an intensively-studied approach for the treatment of malignant neoplasms. Various active oxygen and nitrogen compounds are believed to be the main cytotoxic effectors on biotargets; however, the comprehensive mechanism of CAP interaction with living cells and tissues remains elusive. In this study, we experimentally determined the optimal discharge regime (or semi-selective regime) for the direct CAP jet treatment of cancer cells, under which lung adenocarcinoma A549, A427 and NCI-H23 cells demonstrated substantial suppression of viability, coupled with a weak viability decrease of healthy lung fibroblasts Wi-38 and MRC-5. The death of CAP-exposed cancer and healthy cells under semi-selective conditions was caspase-dependent. We showed that there was an accumulation of lysosomes in the treated cells. The increased activity of lysosomal protease Cathepsin D, the transcriptional upregulation of autophagy-related MAPLC3B gene in cancer cells and the changes in autophagy-related proteins may have indicated the activation of autophagy. The addition of the autophagy inhibitor chloroquine (CQ) after the CAP jet treatment increased the death of A549 cancer cells in a synergistic manner and showed a low effect on the viability of CAP-treated Wi-38 cells. Downregulation of Drp1 mitochondrial protein and upregulation of PINK1 protein in CAP + CQ treated cells indicated that CQ increased the CAP-dependent destabilization of mitochondria. We concluded that CAP weakly activated pro-survival autophagy in irradiated cells, and CQ promoted CAP-dependent cell death due to the destabilization of autophagosomes formation and mitochondria homeostasis. To summarize, the combination of CAP treatment with CQ could be useful for the development of cold plasma-based antitumor approaches for clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857254PMC
http://dx.doi.org/10.3390/cells12020290DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
cells
11
lung adenocarcinoma
8
adenocarcinoma a549
8
cold atmospheric
8
atmospheric plasma
8
cap jet
8
jet treatment
8
treated cells
8
cap
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!