AI Article Synopsis

  • - Moonlighting proteins are single polypeptide chains that have evolved to perform multiple functions, with over 78% linked to human diseases and many being potential drug targets.
  • - These proteins can activate different functions under pathological conditions, either promoting or combating diseases, particularly in processes like inflammation and cancer.
  • - Understanding the specific roles of moonlighting proteins in disease progression is crucial for developing effective treatments, as their functions can impact a patient's health in complex ways.

Article Abstract

The term moonlighting proteins refers to those proteins that present alternative functions performed by a single polypeptide chain acquired throughout evolution (called canonical and moonlighting, respectively). Over 78% of moonlighting proteins are involved in human diseases, 48% are targeted by current drugs, and over 25% of them are involved in the virulence of pathogenic microorganisms. These facts encouraged us to study the link between the functions of moonlighting proteins and disease. We found a large number of moonlighting functions activated by pathological conditions that are highly involved in disease development and progression. The factors that activate some moonlighting functions take place only in pathological conditions, such as specific cellular translocations or changes in protein structure. Some moonlighting functions are involved in disease promotion while others are involved in curbing it. The disease-impairing moonlighting functions attempt to restore the homeostasis, or to reduce the damage linked to the imbalance caused by the disease. The disease-promoting moonlighting functions primarily involve the immune system, mesenchyme cross-talk, or excessive tissue proliferation. We often find moonlighting functions linked to the canonical function in a pathological context. Moonlighting functions are especially coordinated in inflammation and cancer. Wound healing and epithelial to mesenchymal transition are very representative. They involve multiple moonlighting proteins with a different role in each phase of the process, contributing to the current-phase phenotype or promoting a phase switch, mitigating the damage or intensifying the remodeling. All of this implies a new level of complexity in the study of pathology genesis, progression, and treatment. The specific protein function involved in a patient's progress or that is affected by a drug must be elucidated for the correct treatment of diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857295PMC
http://dx.doi.org/10.3390/cells12020235DOI Listing

Publication Analysis

Top Keywords

moonlighting functions
32
moonlighting proteins
20
moonlighting
13
functions
10
proteins disease
8
canonical moonlighting
8
pathological conditions
8
involved disease
8
proteins
6
disease
6

Similar Publications

The mitochondrial outer membrane (OMM) β-barrel proteins link the mitochondrion with the cytosol, endoplasmic reticulum, and other cellular membranes, establishing cellular homeostasis. Their active insertion and assembly in the outer mitochondrial membrane is achieved in an energy-independent yet highly effective manner by the Sorting and Assembly Machinery (SAM) of the OMM. The core SAM constituent is the 16-stranded transmembrane β-barrel Sam50.

View Article and Find Full Text PDF

Nucleus-translocated GCLM promotes chemoresistance in colorectal cancer through a moonlighting function.

Nat Commun

January 2025

Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.

Metabolic enzymes perform moonlighting functions during tumor progression, including the modulation of chemoresistance. However, the underlying mechanisms of these functions remain elusive. Here, utilizing a metabolic clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout library screen, we observe that the loss of glutamate-cysteine ligase modifier subunit (GCLM), a rate-limiting enzyme in glutathione biosynthesis, noticeably increases the sensitivity of colorectal cancer (CRC) cells to platinum-based chemotherapy.

View Article and Find Full Text PDF

Long-distance migrants must optimise their timing of breeding to capitalise on resources at both breeding and over-wintering sites. In species with protracted breeding seasons, departing earlier on migration might be advantageous, but is constrained by the ongoing breeding attempt. Here we investigated how breeding timing affects migratory strategies in the Manx shearwater (Puffinus puffinus), a trans-hemispheric migratory seabird with large temporal variation in the onset of breeding.

View Article and Find Full Text PDF

Non-canonical function of PHGDH promotes HCC metastasis by interacting with METTL3.

Cell Oncol (Dordr)

December 2024

Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.

Article Synopsis
  • PHGDH, an important enzyme in serine production, is found to promote the spread of hepatocellular carcinoma (HCC) by interacting with METTL3, suggesting a new avenue for cancer treatment.
  • The study utilized various methods including Western blot and immunofluorescence to show that PHGDH levels increase under anoikis, enhancing HCC cell metastasis and preventing METTL3 degradation.
  • Results indicate that the connection between PHGDH and METTL3 upregulates genes related to cell migration, ultimately supporting HCC metastasis, warranting further investigation as a therapeutic target.
View Article and Find Full Text PDF

Nocturnal camouflage through background matching against moonlight.

Proc Natl Acad Sci U S A

January 2025

Estación Biológica de Doñana, Department of Ecology and Evolution, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla E-41092, Spain.

Camouflage is often considered a daytime phenomenon based on light and shade. Nocturnal camouflage can also occur, but its mechanistic basis remains unclear. Here, we analyze the conditions for background matching (BM) of avian predators against the night sky.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!