A Flexible Pressure Sensor Based on Silicon Nanomembrane.

Biosensors (Basel)

State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China.

Published: January 2023

With advances in new materials and technologies, there has been increasing research focused on flexible sensors. However, in most flexible pressure sensors made using new materials, it is challenging to achieve high detection sensitivity across a wide pressure range. Although traditional silicon-based sensors have good performance, they are not formable and, because of their rigidity and brittleness, they are not suitable for fitting with soft human skin, which limits their application in wearable devices to collect various signals. Silicon nanomembranes are ultra-thin, flexible materials with excellent piezoresistive properties, and they can be applied in various fields, such as in soft robots and flexible devices. In this study, we developed a flexible pressure sensor based on the use of silicon nanomembranes (with a thickness of only 340 nm) as piezoresistive units, which were transferred onto a flexible polydimethylsiloxane (PDMS) substrate. The flexible pressure sensor operated normally in the range of 0-200 kPa, and the sensitivity of the sensor reached 0.0185 kPa in the low-pressure range of 0-5 kPa. In the high-pressure range of 5-200 kPa, the sensitivity of the sensor was maintained at 0.0023 kPa. The proposed sensor exhibited a fast response and excellent long-term stability and could recognize human movements, such as the bending of fingers and wrist joints, while maintaining a stable output. Thus, the developed flexible pressure sensor has promising applications in body monitoring and wearable devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856423PMC
http://dx.doi.org/10.3390/bios13010131DOI Listing

Publication Analysis

Top Keywords

flexible pressure
20
pressure sensor
16
flexible
9
sensor based
8
based silicon
8
wearable devices
8
silicon nanomembranes
8
developed flexible
8
kpa sensitivity
8
sensitivity sensor
8

Similar Publications

Capacity problems in healthcare lead organizations to seek new and fluid ways of organizing care to safeguard access to services. Task reallocation, triage and stepped care models are increasingly foregrounded as promising interventions that enhance the capacity, efficiency, and resilience of medical services and through which access can be maintained for a growing client base. In this paper, we argue that interventions meant to enhance capacity and increase efficiency have their limits in a system that is already under strain.

View Article and Find Full Text PDF

Flexible micro-sensors have significant application potential in the field of sports performance evaluation. The aim of this study is to assess sports performance by grip pressure using a MMSS sensor (MXene as the sensitive material and melamine sponge as the substrate, a type of flexible piezoresistive pressure sensor). The grip pressures of expert and amateur players are evaluated in single skills events (golf, billiards, basketball, javelin and shot put) and in skills conversion (badminton and tennis).

View Article and Find Full Text PDF

All-polymer piezo-ionic-electric electronics.

Nat Commun

December 2024

Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

Piezoelectric electronics possess great potential in flexible sensing and energy harvesting applications. However, they suffer from low electromechanical performance in all-organic piezoelectric systems due to the disordered and weakly-polarized interfaces. Here, we demonstrated an all-polymer piezo-ionic-electric electronics with PVDF/Nafion/PVDF (polyvinylidene difluoride) sandwich structure and regularized ion-electron interfaces.

View Article and Find Full Text PDF

Impact of blood flow restriction intensity on pain perception and muscle recovery post-eccentric exercise.

Clin Physiol Funct Imaging

January 2025

Faculty of Health Sciences, Division of Physiotherapy and Rehabilitation, Istanbul Okan University, Istanbul, Turkey.

Background: Delayed onset muscle soreness (DOMS) is a well-established phenomenon characterized by ultrastructural muscle damage that typically develops following unfamiliar or high-intensity exercise. DOMS manifests with a constellation of symptoms, including muscle tenderness, stiffness, edema, mechanical hyperalgesia, and a reduced range of joint motion. In recent years, the application of blood flow restriction (BFR) has garnered attention for its potential impact on DOMS.

View Article and Find Full Text PDF

Facile Preparation of Carbon Nanotube-Based Skin-Like Pressure Sensors.

Small

December 2024

Department of Chemistry & Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada.

Flexible sensors have garnered significant interest for their potential to monitor human activities and provide valuable feedback for healthcare purposes. Single-walled carbon nanotubes (SWNTs) are promising materials for these applications but suffer from issues of poor purity and solubility. Dispersing SWNTs with conjugated polymers (CPs) enhances solution processability, yet the polymer sidechains can insulate the SWNTs, limiting the sensor's operating voltage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!