Noble metals have always fascinated researchers due to their feasible and facile approach to plasmonics. Especially the extensive utilization of gold (Au) has been found in biomedical engineering, microelectronics, and catalysis. Surface plasmonic resonance (SPR) sensors are achievable by employing plasmonic nanoparticles. The past decades have seen colossal advancement in noble metal nanoparticle research. Surface plasmonic biosensors are advanced in terms of sensing accuracy and detection limit. Likewise, gold nanoparticles (AuNPs) have been widely used to develop distinct biosensors for molecular diagnosis. DNA nanotechnology facilitates advanced nanostructure having unique properties that contribute vastly to clinical therapeutics. The critical element for absolute control of materials at the nanoscale is the engineering of optical and plasmonic characteristics of the polymeric and metallic nanostructure. Correspondingly, AuNP's vivid intense color expressions are dependent on their size, shape, and compositions, which implies their strong influence on tuning the plasmonic properties. These plasmonic properties of AuNPs have vastly exerted the biosensing and molecular diagnosis applications without any hazardous effects. Here, we have designed nanoscale X-DNA-based Dgel scaffolds utilized for tuning the plasmonic properties of AuNPs. The DNA nanohydrogel (Dgel) scaffolds engineered with three different X-DNAs of distinct numbers of base pairs were applied. We have designed X-DNA base pair-controlled size-varied Dgel scaffolds and molar ratio-based nano assemblies to tune the plasmonic properties of AuNPs. The nanoscale DNA hydrogel's negatively charged scaffold facilitates quaternary ammonium ligand-modified positively charged AuNPs to flocculate around due to electrostatic charge attractions. Overall, our study demonstrates that by altering the DNA hydrogel scaffolds and the physical properties of the nanoscale hydrogel matrix, the SPR properties can be modulated. This approach could potentially benefit in monitoring diverse therapeutic biomolecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855890 | PMC |
http://dx.doi.org/10.3390/bios13010020 | DOI Listing |
J Chem Theory Comput
January 2025
Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States.
The photocatalytic efficiency of materials such as graphene and noble metal nanoclusters depends on their plasmon lifetimes. Plasmon dephasing and decay in these materials is thought to occur on ultrafast time scales, ranging from a few femtoseconds to hundreds of femtoseconds and longer. Here we focus on understanding the dephasing and decay pathways of excited states in small lithium and silver clusters and in plasmonic states of the π-conjugated molecule anthracene, providing insights that are crucial for interpreting optical properties and photophysics.
View Article and Find Full Text PDFNanotechnology
January 2025
Experimentalphysik, Saarland University, Fachrichtung 7.2, Campus E2.6, 66123 Saarbruecken, Saarbrucken, Saarland, 66123, GERMANY.
Color centers are promising single-photon emitters owing to their operation at room temperature and high photostability. In particular, using nanodiamonds as a host material is of interest for sensing and metrology. Furthermore, being a solid-state system allows for incorporation to photonic systems to tune both the emission intensity and photoluminescence spectrum and therefore adapt the individual color center to desired properties.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey.
The combination of plasmonic metals and MXene, as a new and interesting member of the 2D material class, may provide unique advantages in terms of low cost, versatility, flexibility, and improved activity as an ideal surface-enhanced Raman spectroscopy (SERS) platform. Despite the recent progress, the present studies on the utilization of plasmonic metal/MXene-based SERS systems are quite limited and thereby benefits of the extraordinary properties of this combination cannot be realized. In this study, for the first time, we propose layer-by-layer (LbL) thin films of TiC MXene and gold nanoparticles (AuNPs) as a robust SERS platform (TiC/AuNPs).
View Article and Find Full Text PDFNanotechnology
January 2025
Experimentalphysik, Saarland University, Fachrichtung 7.2, Campus E2.6, 66123 Saarbruecken, Saarbrucken, Saarland, 66123, GERMANY.
Color centers are promising single-photon emitters owing to their operation at room temperature and high photostability. In particular, using nanodiamonds as a host material is of interest for sensing and metrology. Furthermore, being a solid-state system allows for incorporation to photonic systems to tune both the emission intensity and photoluminescence spectrum and therefore adapt the individual color center to desired properties.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Optical metasurfaces, arrays of nanostructures engineered to manipulate light, have emerged as a transformative technology in both research and industry due to their compact design and exceptional light control capabilities. Their strong light-matter interactions enable precise wavefront modulation, polarization control, and significant near-field enhancements. These unique properties have recently driven their application in biomedical fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!