The peach fruit fly, (Tephritidae), is economically relevant as a highly polyphagous pest infesting over 50 host plants including commercial fruit and horticultural crops. As an invasive species, was firmly established in Egypt and holds potential to spread further across the Mediterranean basin. The present study demonstrated that the peach fruit fly was found multiplying in olive orchards at two distant locations in Egypt. This is the first report of developing in olives. COI barcoding has revealed evidence for high diversity across these peach fruit fly populations. These data are consistent with multiple rather than a single event leading to both peach fruit fly invasion to Egypt and its adaptation to olive. Comparative microbiomics data for developing on different host plants were indicative for microbiome dynamics being involved in the adaptation to olive as a new niche with a potential adaptive role for or bacteria. The possibility of symbiont transfer from the olive fruit fly to the peach fruit fly is discussed. Potentially host switch relevant bacterial symbionts might be preferred targets of symbiosis disruption strategies for integrated pest management or biological control of .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855353PMC
http://dx.doi.org/10.3390/biology12010027DOI Listing

Publication Analysis

Top Keywords

fruit fly
28
peach fruit
24
comparative microbiomics
8
fruit
8
olive orchards
8
host plants
8
adaptation olive
8
fly
7
peach
6
olive
5

Similar Publications

Taking advantage of the good mechanical strength of expanded Drosophila brains and to tackle their relatively large size that can complicate imaging, we apply potassium (poly)acrylate-based hydrogels for expansion microscopy (ExM), resulting in a 40x plus increased resolution of transgenic fluorescent proteins preserved by glutaraldehyde fixation in the nervous system. Large-volume ExM is realized by using an axicon-based Bessel lightsheet microscope, featuring gentle multi-color fluorophore excitation and intrinsic optical sectioning capability, enabling visualization of Tm5a neurites and L3 lamina neurons with photoreceptors in the optic lobe. We also image nanometer-sized dopaminergic neurons across the same intact iteratively expanded Drosophila brain, enabling us to measure the 3D expansion ratio.

View Article and Find Full Text PDF

A high-protein diet-responsive gut hormone regulates behavioral and metabolic optimization in Drosophila melanogaster.

Nat Commun

December 2024

Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.

Protein is essential for all living organisms; however, excessive protein intake can have adverse effects, such as hyperammonemia. Although mechanisms responding to protein deficiency are well-studied, there is a significant gap in our understanding of how organisms adaptively suppress excessive protein intake. In the present study, utilizing the fruit fly, Drosophila melanogaster, we discover that the peptide hormone CCHamide1 (CCHa1), secreted by enteroendocrine cells in response to a high-protein diet (HPD), is vital for suppressing overconsumption of protein.

View Article and Find Full Text PDF

A Drosophila Model of Mucopolysaccharidosis IIIB.

Genetics

December 2024

Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA.

Mucopolysaccharidosis type IIIB (MPS IIIB) is a rare lysosomal storage disorder caused by defects in alpha-N-acetylglucosaminidase (NAGLU) and characterized by severe effects in the central nervous system. Mutations in NAGLU cause accumulation of partially degraded heparan sulfate in lysosomes. The consequences of these mutations on whole genome gene expression and their causal relationships to neural degeneration remain unknown.

View Article and Find Full Text PDF

Interactions between species pose considerable challenges for forecasting the response of ecological communities to global changes. Coexistence theory could address this challenge by defining the conditions species can or cannot persist alongside competitors. However, although coexistence theory is increasingly deployed for projections, these frameworks have rarely been subjected to critical multigenerational validation tests.

View Article and Find Full Text PDF

Orthologs of and impact sleep in mice.

Sleep Adv

December 2024

Murine Phenotyping Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Model organisms such as are powerful tools to study the genetic basis of sleep. Previously, we identified the genes and using selective breeding for long and short sleep duration in an outbred population of . is a transcription factor that is part of the epidermal growth factor receptor signaling pathway, while is involved in proline and arginine metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!