Fibroblasts Impair Migration and Antitumor Activity of NK-92 Lymphocytes in a Melanoma-on-Chip Model.

Bioengineering (Basel)

ICVS/3B's-PT Government Associate Laboratory, 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4700-000 Braga, Portugal.

Published: December 2022

Adoptive cell therapy in solid tumors, such as melanoma, is impaired, but little is known about the role that the fibroblasts present in the tumor microenvironment could exert. However, the mechanism at play is not well understood, partly due to the lack of relevant pre-clinical models. Three-dimensional culture and microfluidic chips are used to recapitulate the dynamic interactions among different types of cells in the tumor microenvironment in controlled and physiological settings. In this brief report, we propose a reductionist melanoma-on-a-chip model for evaluating the essential role of fibroblasts in the antitumor activity of lymphocytes. To this end, 3D melanoma spheroids were monocultured and co-cultured with human dermal fibroblasts and the NK-92 cell migration towards the tumor compartment was tested in a commercially available microfluidic device. Utilizing confocal microscopy, we observed the different recruitment of NK-92 cells in the presence and absence of fibroblasts. Our results show that fibroblasts' presence inhibits immune effector recruiting by exploiting a 3D pre-clinical tumor model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854880PMC
http://dx.doi.org/10.3390/bioengineering10010052DOI Listing

Publication Analysis

Top Keywords

antitumor activity
8
role fibroblasts
8
tumor microenvironment
8
fibroblasts
5
fibroblasts impair
4
impair migration
4
migration antitumor
4
activity nk-92
4
nk-92 lymphocytes
4
lymphocytes melanoma-on-chip
4

Similar Publications

CD73, an ectoenzyme responsible for adenosine production, is often elevated in immuno-suppressive tumor environments. Inhibition of CD73 activity holds great promise as a therapeutic strategy for CD73-expressing cancers. In this study, we have developed a therapeutic anti-human CD73 antibody cocktail, HB0045.

View Article and Find Full Text PDF

Inflammasomes are defense complexes that utilize cytokines and immunogenic cell death (ICD) to stimulate the immune system against pathogens. Inspired by their dual action, we present cytokine-armed pyroptosis as a strategy for boosting immune response against diverse types of tumors. To induce pyroptosis, we utilize designed tightly regulated gasdermin D variants comprising different pore-forming capabilities and diverse modes of activation, representing a toolbox of ICD inducers.

View Article and Find Full Text PDF

Metaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane.

View Article and Find Full Text PDF

The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.

View Article and Find Full Text PDF

Cancer, a disease threatening human life, is caused by the disturbance of the normal cell cycle, which results in the spontaneous growth of normal and malignant cells, the lack of differentiation between the two, and consequently malignant growths. Nowadays, various synthetic agents are applied for cancer therapy; nevertheless, reports have confirmed that these chemical agents are associated with various adverse complications. This experimental study was designed to assess the anti-tumor activities of zinc nanoparticles (ZnNPs) green synthesized by the () extract against Ehrlich solid tumors (EST) in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!