The study aims to investigate the likelihood of Zernike polynomial being used for reconstructing rabbit corneal surfaces as scanned by the Pentacam segment tomographer, and hence evaluate the accuracy of corneal power maps calculated from such Zernike fitted surfaces. The study utilised a data set of both eyes of 21 rabbits using a reverse engineering approach for deductive reasoning. Pentacam raw elevation data were fitted to Zernike polynomials of orders 2 to 20. The surface fitting process to Zernike polynomials was carried out using randomly selected 80% of the corneal surface data points, and the root means squared fitting error (RMS) was determined for the other 20% of the surface data following the Pareto principle. The process was carried out for both the anterior and posterior surfaces of the corneal surfaces that were measured via Pentacam scans. Raw elevation data and the fitted corneal surfaces were then used to determine corneal axial and tangential curvature maps. For reconstructed surfaces calculated using the Zernike fitted surfaces, the mean and standard deviation of the error incurred by the fitting were calculated. For power maps computed using the raw elevation data, different levels of discrete cosine transform (DCT) smoothing were employed to infer the smoothing level utilised by the Pentacam device. The RMS error was not significantly improved for Zernike polynomial orders above 12 and 10 when fitting the anterior and posterior surfaces of the cornea, respectively. This was noted by the statistically non-significant increase in accuracy when the order was increased beyond these values. The corneal curvature calculations suggest that a smoothing process is employed in the corneal curvature maps outputted by the Pentacam device; however, the exact smoothing method is unknown. Additionally, the results suggest that fitting corneal surfaces to high-order Zernike polynomials will incur a clinical error in the calculation of axial and tangential corneal curvature of at least 0.16 ± 01 D and 0.36 ± 0.02 D, respectively. Rabbit corneal anterior and posterior surfaces scanned via the Pentacam were optimally fitted to orders 12 and 10 Zernike polynomials. This is essential to get stable values of high-order aberrations that are not affected by Zernike polynomial fittings, such as comas for Intracorneal Ring Segments (ICRS) adjustments or spherical aberration for pre-cataract operations. Smoothing was necessary to replicate the corneal curvature maps outputted by the Pentacam tomographer, and fitting corneal surfaces to Zernike polynomials introduces errors in the calculation of both the axial and tangential corneal curvatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854916 | PMC |
http://dx.doi.org/10.3390/bioengineering10010039 | DOI Listing |
Biol Imaging
November 2024
Institut de Recherche en Informatique de Toulouse (IRIT), CNRS & Université de Toulouse, Toulouse, France.
We propose a neural network architecture and a training procedure to estimate blurring operators and deblur images from a single degraded image. Our key assumption is that the forward operators can be parameterized by a low-dimensional vector. The models we consider include a description of the point spread function with Zernike polynomials in the pupil plane or product-convolution expansions, which incorporate space-varying operators.
View Article and Find Full Text PDFSci Rep
January 2025
Hannover Centre for Optical Technologies (HOT), Leibniz University Hannover, Hannover, Germany.
Hyperspectral imaging (HSI) systems acquire images with spectral information over a wide range of wavelengths but are often affected by chromatic and other optical aberrations that degrade image quality. Deconvolution algorithms can improve the spatial resolution of HSI systems, yet retrieving the point spread function (PSF) is a crucial and challenging step. To address this challenge, we have developed a method for PSF estimation in HSI systems based on computed wavefronts.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Opto-Electronics Engineering, Xi'an Technological University, Xi'an 710021, China.
To overcome the limitations of phase sampling points in testing aspherical surface wavefronts using traditional interferometers, we propose a high-spatial-resolution method based on multi-directional orthogonal lateral shearing interferometry. In this study, we provide a detailed description of the methodology, which includes the theoretical foundations and experimental setup, along with the results from simulations and experiments. By establishing a relational model between the multi-directional differential wavefront and differential Zernike polynomials, we demonstrate high-spatial-resolution wavefront reconstruction using multi-directional orthogonal lateral shearing interferometry.
View Article and Find Full Text PDFCornea
January 2025
Department of Ophthalmology, Goethe University Frankfurt, Frankfurt am Main, Germany .
Purpose: This study aims to evaluate the repeatability of posterior corneal surface and Zernike polynomial measurements of 2 different ocular biometers and Scheimpflug devices in keratoconus (KC) and healthy eyes.
Methods: This is a prospective, comparative study performed at the Department of Ophthalmology, Goethe-University Frankfurt, Germany. Included were KC and healthy eyes.
Sci Rep
November 2024
MOE Key Laboratory of TianQin Mission, TianQin Research Center for Gravitational Physics and School of Physics and Astronomy, Frontiers Science Center for TianQin, Gravitational Wave Research Center of CNSA, Sun Yat-sen University (Zhuhai Campus), Zhuhai, 519082, China.
As a critical payload of the gravitational wave detection interferometry system, the tilt-to-length (TTL) noise has a significant influence on the detection accuracy of the interferometry system. The non-geometric TTL (NG-TTL) noise, which is the main component of the TTL noise within the telescope, is closely related to the sensitive aberrations of the system's small pupil. Due to the different environments of the earth and space, structural deformations of the telescope can cause significantly unfavorable changes in the sensitive aberrations at the small pupil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!