Substrate selectivity is an important preventive measure to decrease the possibility of cross interactions between enzymes and metabolites that share structural similarities. In addition, understanding the mechanisms that determine selectivity towards a particular substrate increases the knowledge base for designing specific inhibitors for target enzymes. Here, we combine NMR, molecular dynamics (MD) simulations, and protein engineering to investigate how two substrate analogues, allylicphosphonate (cPEP) and sulfoenolpyruvate (SEP), recognize the mesophilic (eEIC) and thermophilic (tEIC) homologues of the receptor domain of bacterial Enzyme I, which has been proposed as a target for antimicrobial research. Chemical Shift Perturbation (CSP) experiments show that cPEP and SEP recognize tEIC over the mesophilic homologue. Combined Principal Component Analysis of half-microsecond-long MD simulations reveals that incomplete quenching of a breathing motion in the eEIC-ligand complex destabilizes the interaction and makes the investigated substrate analogues selective toward the thermophilic enzyme. Our results indicate that residual protein motions need to be considered carefully when optimizing small molecule inhibitors of EI. In general, our work demonstrates that protein conformational dynamics can be exploited in the rational design and optimization of inhibitors with subfamily selectivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856155 | PMC |
http://dx.doi.org/10.3390/biom13010160 | DOI Listing |
J Phys Chem A
January 2025
Computer Modelling Group, 3710 33 St NW, Calgary, Alberta T2L 2M1, Canada.
Coarse-grained molecular dynamics simulation is widely accepted for assessment of a large complex biological system, but it may also lead to a misleading conclusion. The challenge is to simulate protein structural dynamics (such as folding-unfolding behavior) due to the lack of a necessary backbone flexibility. This study developed a standard coarse-grained model directly from the protein atomic structure and amino acid coarse-grained FF (such as MARTINI FF v2.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China.
Background: Tea-oil Camellia within the genus Camellia is renowned for its premium Camellia oil, often described as "Oriental olive oil". So far, only one partial mitochondrial genomes of Tea-oil Camellia have been published (no main Tea-oil Camellia cultivars), and comparative mitochondrial genomic studies of Camellia remain limited.
Results: In this study, we first reconstructed the entire mitochondrial genome of C.
EMBO Rep
January 2025
LMU Munich, Biozentrum-Cell Biology, 82152, Planegg-Martinsried, Germany.
Import and assembly of mitochondrial proteins into multimeric complexes are essential for cellular function. Yet, many steps of these processes and the proteins involved remain unknown. Here, we identify a novel pathway for disulfide bond formation and assembly of mitochondrial inner membrane (IM) proteins.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Identifying transitional states is crucial for understanding protein conformational changes that underlie numerous biological processes. Markov state models (MSMs), built from Molecular Dynamics (MD) simulations, capture these dynamics through transitions among metastable conformational states, and have demonstrated success in studying protein conformational changes. However, MSMs face challenges in identifying transition states, as they partition MD conformations into discrete metastable states (or free energy minima), lacking description of transition states located at the free energy barriers.
View Article and Find Full Text PDFTrends Biochem Sci
January 2025
Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark. Electronic address:
Human glucokinase (GCK) functions as a glucose sensor in the pancreas and liver, where GCK activity regulates insulin secretion and glycogen synthesis, respectively. GCK's low affinity for glucose and the sigmoidal substrate dependency of enzymatic turnover enables it to act as a sensor that makes cells responsive to changes in circulating glucose levels. Its unusual kinetic properties are intrinsically linked to the enzyme's conformational dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!