FMRFamide-related peptides are neuropeptides involved in a wide range of biological processes, including reproduction and larval development. To characterize the involvement of FMRFamide in the reproduction and larval development of Pacific abalone , an FMRFamide cDNA () was cloned from the cerebral ganglion (CG). Fluorescence in situ hybridization and qRT-PCR were performed for functional characterization. The cDNA encoded 204 deduced amino acids that contained a putative signal peptide and four FaRP domains. The major population of neuronal cell bodies was localized in the cortex of CG. mRNA expression was significantly upregulated in CG during the mature stage of gonadal development and effective accumulative temperature (EAT) exposed abalone in both sexes. In the induced spawning event, expression was significantly upregulated during spawning in males. However, no upregulation was observed in females, suggesting might inhibit gamete release in female abalone. These results revealed as a reproduction related peptide. Furthermore, mRNA expression in larval development suggested that this peptide was also involved in larval development during development of Pacific abalone. Collectively, this study provides evidence of possible involvement of an FMRFamide neuropeptide in the reproduction and larval development of Pacific abalone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856054 | PMC |
http://dx.doi.org/10.3390/biom13010109 | DOI Listing |
PLoS Negl Trop Dis
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.
View Article and Find Full Text PDFMol Ecol
January 2025
Marine and Environmental Biology, University of Southern California, Los Angeles, California, USA.
Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.
View Article and Find Full Text PDFFish Physiol Biochem
January 2025
Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
Pituitary gland morphogenesis and the ontogeny of the adenohypophyseal (AH) cells of Astyanax lacustris are presented herein. This Characiformes species shows great ecological and commercial importance, and it has been increasingly used as animal model. For this study, A.
View Article and Find Full Text PDFCurr Biol
January 2025
Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany. Electronic address:
Brood care relies on interactions between parents and offspring. Emergence of nestlings from their nest has been hypothesized to rely on the readout by the parent of the maturational state of the young. Theoretical considerations predict a conflict: parents should push for early emergence, if possible, to reduce care demands and maximize the number of reproductive cycles, whereas offspring should delay leaving to maximize resource allocation and protection by the parents.
View Article and Find Full Text PDFiScience
January 2025
Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
Development and function of an organism depend on coordinated inter-tissue interaction. How such interactions are maintained during tissue renewal and reorganization remains poorly understood. Here, we find that BEN domain transcription factor LIN-14 is required in epidermis for maintaining the position of motor neurons and muscles during developmental tissue reorganization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!