Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the studies of network structures, much attention has been devoted to developing approaches to reconstruct networks and predict missing links when edge-related information is given. However, such approaches are not applicable when we are only given noisy node activity data with missing values. This work presents an unsupervised learning framework to learn node vectors and construct networks from such node activity data. First, we design a scheme to generate random node sequences from node context sets, which are generated from node activity data. Then, a three-layer neural network is adopted training the node sequences to obtain node vectors, which allow us to construct networks and capture nodes with synergistic roles. Furthermore, we present an entropy-based approach to select the most meaningful neighbors for each node in the resulting network. Finally, the effectiveness of the method is validated through both synthetic and real data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869472 | PMC |
http://dx.doi.org/10.1103/PhysRevE.106.064301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!