Ferrofluid flow is fascinating since its fluid properties can conveniently be manipulated by external magnetic fields. Novel applications in micro- and nanofluidics as well as in biomedicine have renewed the interest in the flow of colloidal magnetic nanoparticles with a focus on small-scale behavior. Traditional flow simulations of ferrofluids, however, often use simplified constitutive models and do not include fluctuations that are relevant at small scales. Here we address these challenges by proposing a hybrid scheme that combines the multiparticle collision dynamics method for modeling hydrodynamics with Brownian dynamics simulations of a reliable kinetic model describing the microstructure, magnetization dynamics, and resulting stresses. Since both multiparticle collision dynamics and Brownian dynamics are mesoscopic methods that naturally include fluctuations, this hybrid scheme presents a promising alternative to more traditional approaches, also because of the flexibility to model different geometries and modifying the constitutive model. The scheme was tested in several ways. Poiseuille flow was simulated for various model parameters and effective viscosities were determined from the resulting flow profiles. The effective, field-dependent viscosities are found to be in very good agreement with theoretical predictions. We also study Stokes' second flow problem for ferrofluids. For weak amplitudes and low frequencies of the oscillating plate, we find that the velocity profiles are well described by the result for Newtonian fluids at the corresponding, field-dependent viscosity. Furthermore, the time-dependent profiles of the nonequilibrum magnetization component are well approximated by their steady-state values in stationary shear when evaluated with the instantaneous local shear rate. Finally, we also apply our scheme to simulate ferrofluid shear flow over a rough surface. We find characteristic differences in the nonequilibrium magnetization components when the external field is oriented in flow and in a gradient direction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.106.064605 | DOI Listing |
Macromolecules
December 2024
Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
We employ mesoscopic simulations to study the thermophoretic motion of polymers in a solvent via multiparticle collision dynamics (MPCD). As the usual solvent-monomer collision rules employed in MPCD involving polymers fail to cause thermophoresis, we extend the technique by introducing explicit solvent-monomer interactions, while the solvent molecules remain ideal with respect to one another. We find that with purely repulsive polymer-solvent interaction, the polymer exhibits thermophilic behavior, whereas to display thermophobic behavior, the polymer-solvent potential requires the presence of attractions between solvent particles and monomers, in accordance with previous experimental findings.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
School of Physics, Hangzhou Normal University, Hangzhou 311121, China.
Enzyme-powered nanomotors have attracted significant attention in materials science and biomedicine for their biocompatibility, versatility, and the use of biofuels in biological environments. Here, we employ a hybrid mesoscale method combining molecular dynamics and multi-particle collision dynamics (MD-MPC) to study the dynamics of nanomotors powered by enzyme reactions. Two cascade enzymes are constructed to be layered on the same surface of a Janus colloid, providing a confined space that greatly enhances reaction efficiency.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Johannes Gutenberg-Universität, Institut für Physik, Mainz, Germany.
J Phys Chem B
December 2024
Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States.
We use hybrid molecular dynamics-multiparticle collision dynamics (MD-MPCD) simulations to investigate the influence of chain stiffness on the transport of nanoparticles (NPs) through solutions of semiflexible ring polymers. The NPs exhibit subdiffusive dynamics on short time scales before transitioning to normal diffusion at longer times. The terminal NP diffusivity decreases with increasing ring stiffness, similar to the behavior observed in solutions of semiflexible linear chains.
View Article and Find Full Text PDFSoft Matter
November 2024
School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
Polymers are a primary building block in many biomaterials, often interacting with anisotropic backgrounds. While previous studies have considered polymer dynamics within nematic solvents, rarely are the effects of anisotropic viscosity and polymer elongation differentiated. Here, we study polymers embedded in nematic liquid crystals with isotropic viscosity numerical simulations to explicitly investigate the effect of nematicity on macromolecular conformation and how conformation alone can produce anisotropic dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!