Numerical simulation of the bifurcation-remerging process and intermittency in an undriven direct current glow discharge.

Phys Rev E

School of Physics, Harbin Institute of Technology, Harbin 150001, People's Republic of China and Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin 150001, People's Republic of China.

Published: December 2022

As a complex nonlinear medium, gas discharge plasma can exhibit various nonlinear discharge behaviors. In this study, in order to investigate the chaos phenomenon in the subnormal glow region of an undriven direct current glow discharge, a two-dimensional plasma fluid model is established coupled with a circuit model as a boundary condition. Using the applied voltage as control parameter in the simulation, the complete period-doubling bifurcation and inverse period-doubling bifurcation processes in the oscillation region are found, and the influence of the applied voltage on the spatiotemporal distribution of plasma parameters during the bifurcation-remerging process is examined. In addition, the spatial distribution of the plasma parameters of the bifurcation-remerging process is also examined. Also, a series of periodic windows are present in the chaotic region, where the positions and relative order are generally consistent with the universal sequence. Additionally, this study showed that the intermittent chaos appears near the period-3 window, and the bursts appearing in the approximate periodic motion becomes more and more frequent as the control parameters move away from the saddle-node bifurcation point, which shows the typical type-I intermittent chaos characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.065207DOI Listing

Publication Analysis

Top Keywords

bifurcation-remerging process
12
undriven direct
8
direct current
8
current glow
8
glow discharge
8
applied voltage
8
period-doubling bifurcation
8
distribution plasma
8
plasma parameters
8
parameters bifurcation-remerging
8

Similar Publications

Numerical simulation of the bifurcation-remerging process and intermittency in an undriven direct current glow discharge.

Phys Rev E

December 2022

School of Physics, Harbin Institute of Technology, Harbin 150001, People's Republic of China and Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin 150001, People's Republic of China.

As a complex nonlinear medium, gas discharge plasma can exhibit various nonlinear discharge behaviors. In this study, in order to investigate the chaos phenomenon in the subnormal glow region of an undriven direct current glow discharge, a two-dimensional plasma fluid model is established coupled with a circuit model as a boundary condition. Using the applied voltage as control parameter in the simulation, the complete period-doubling bifurcation and inverse period-doubling bifurcation processes in the oscillation region are found, and the influence of the applied voltage on the spatiotemporal distribution of plasma parameters during the bifurcation-remerging process is examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!