Ascosphaera apis infects exclusively bee larvae and causes chalkbrood, a lethal fungal disease that results in a sharp reduction in adult bees and colony productivity. However, little is known about the effect of A. apis infestation on the activities of antioxidant enzymes in bee larvae. Here, A. apis spores were purified and used to inoculate Asian honey bee (Apis cerana) larvae, followed by the detection of the host survival rate and an evaluation of the activities of four major antioxidant enzymes. At 6 days after inoculation (dpi) with A. apis spores, obvious symptoms of chalkbrood disease similar to what occurs in Apis mellifera larvae were observed. PCR identification verified the A. apis infection of A. cerana larvae. Additionally, the survival rate of larvae inoculated with A. apis was high at 1−2 dpi, which sharply decreased to 4.16% at 4 dpi and which reached 0% at 5 dpi, whereas that of uninoculated larvae was always high at 1~8 dpi, with an average survival rate of 95.37%, indicating the negative impact of A. apis infection on larval survival. As compared with those in the corresponding uninoculated groups, the superoxide dismutase (SOD) and catalase (CAT) activities in the 5- and 6-day-old larval guts in the A. apis−inoculated groups were significantly decreased (p < 0.05) and the glutathione S-transferase (GST) activity in the 4- and 5-day-old larval guts was significantly increased (p < 0.05), which suggests that the inhibition of SOD and CAT activities and the activation of GST activity in the larval guts was caused by A. apis infestation. In comparison with that in the corresponding uninoculated groups, the polyphenol oxidase (PPO) activity was significantly increased (p < 0.05) in the 5-day-old larval gut but significantly reduced (p < 0.01) in the 6-day-old larval gut, indicating that the PPO activity in the larval guts was first enhanced and then suppressed. Our findings not only unravel the response of A. cerana larvae to A. apis infestation from a biochemical perspective but also offer a valuable insight into the interaction between Asian honey bee larvae and A. apis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854781 | PMC |
http://dx.doi.org/10.3390/antiox12010206 | DOI Listing |
Front Microbiol
January 2025
School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom.
The microbiota within the guts of insects plays beneficial roles for their hosts, such as facilitating digestion and extracting energy from their diet. The African palm weevil (APW) lives within and feeds on the high lignin-containing trunk of palm trees; therefore, their guts could harbour a large community of lignin-degrading microbes. In this study, we aimed to explore the bacterial community within the gut of the APW larvae, specifically with respect to the potential for lignin degradation in various gut segments as a first step to determining the viability of mining bacterial lignin-degrading enzymes for the bioconversion of lignocellulosic biomass to biofuels and biomaterials.
View Article and Find Full Text PDFInsect Sci
November 2024
Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
Animals (Basel)
November 2024
Department of Entomology, National Taiwan University, No 1 Sec 4 Roosevelt Rd, Taipei 106319, Taiwan.
Black soldier fly (, BSF) is farmed worldwide to convert organic waste into usable biomaterials. Studies on the larval microbiome have been carried out to check for symbiotic or pathogenic microbes and their respective functions and fates. Some studies tested these microbes for industrial applications, while others tested the effects of exogenous microbes as probiotics or for substrate pre-processing to improve larval fitness, bioconversion rates, or nutritional qualities.
View Article and Find Full Text PDFLipids
November 2024
Faculty of Aquatic Science, Department of Aquaculture and Fish Diseases, Istanbul University, Istanbul, Turkey.
Phospholipid (PL) is an essential nutrient that has vital effects on growth, stress resistance, and early development in marine fish larvae. In this regard, a 30-day feeding experiment was conducted in order to examine the effects of live prey enrichment with graded levels of soy lecithin (SL) on some physiological responses of Acanthopagrus latus larvae. Four experimental emulsion levels of SL were used to enrich rotifer and Artemia including very low (2%, N-Nil), low (4%, L), medium (8%, M), and high (12%, H).
View Article and Find Full Text PDFParasit Vectors
November 2024
University of Pavia, Pavia, Italy.
Background: The biological larvicide Bacillus thuringiensis subsp. israelensis (Bti) represents a safe and effective alternative to chemical insecticides for mosquito control. Efficient control of mosquitoes implicates continuous and extensive application of Bti.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!