The new coronavirus disease (COVID-19) has increased the need for new technologies such as the Internet of Medical Things (IoMT), Wireless Body Area Networks (WBANs), and cloud computing in the health sector as well as in many areas. These technologies have also made it possible for billions of devices to connect to the internet and communicate with each other. In this study, an Internet of Medical Things (IoMT) framework consisting of Wireless Body Area Networks (WBANs) has been designed and the health big data from WBANs have been analyzed using fog and cloud computing technologies. Fog computing is used for fast and easy analysis, and cloud computing is used for time-consuming and complex analysis. The proposed IoMT framework is presented with a diabetes prediction scenario. The diabetes prediction process is carried out on fog with fuzzy logic decision-making and is achieved on cloud with support vector machine (SVM), random forest (RF), and artificial neural network (ANN) as machine learning algorithms. The dataset produced in WBANs is used for big data analysis in the scenario for both fuzzy logic and machine learning algorithm. The fuzzy logic gives 64% accuracy performance in fog and SVM, RF, and ANN have 89.5%, 88.4%, and 87.2% accuracy performance respectively in the cloud for diabetes prediction. In addition, the throughput and delay results of heterogeneous nodes with different priorities in the WBAN scenario created using the IEEE 802.15.6 standard and AODV routing protocol have been also analyzed. Fog-Cloud architecture-driven for IoMT networks • An IoMT framework is designed with important components and functions such as fog and cloud node capabilities. •Real-time data has been obtained from WBANs in Riverbed Modeler for a more realistic performance analysis of IoMT. •Fuzzy logic and machine learning algorithms (RF, SVM, and ANN) are used for diabetes predictions. •Intra and Inter-WBAN communications (IEEE 802.15.6 standard) are modeled as essential components of the IoMT framework with all functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859747PMC
http://dx.doi.org/10.1007/s11517-023-02776-4DOI Listing

Publication Analysis

Top Keywords

iomt framework
16
internet medical
12
medical things
12
cloud computing
12
diabetes prediction
12
fuzzy logic
12
machine learning
12
fog-cloud architecture-driven
8
things iomt
8
wireless body
8

Similar Publications

Optimizing healthcare big data performance through regional computing.

Sci Rep

January 2025

Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates.

The healthcare sector is experiencing a digital transformation propelled by the Internet of Medical Things (IOMT), real-time patient monitoring, robotic surgery, Electronic Health Records (EHR), medical imaging, and wearable technologies. This proliferation of digital tools generates vast quantities of healthcare data. Efficient and timely analysis of this data is critical for enhancing patient outcomes and optimizing care delivery.

View Article and Find Full Text PDF

Intelligent two-phase dual authentication framework for Internet of Medical Things.

Sci Rep

January 2025

Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, 11543, Saudi Arabia.

The Internet of Medical Things (IoMT) has revolutionized healthcare by bringing real-time monitoring and data-driven treatments. Nevertheless, the security of communication between IoMT devices and servers remains a huge problem because of the inherent sensitivity of the health data and susceptibility to cyber threats. Current security solutions, including simple password-based authentication and standard Public Key Infrastructure (PKI) approaches, typically do not achieve an appropriate balance between security and low computational overhead, resulting in the possibility of performance bottlenecks and increased vulnerability to attacks.

View Article and Find Full Text PDF

Feature efficiency in IoMT security: A comprehensive framework for threat detection with DNN and ML.

Comput Biol Med

January 2025

Computer Engineering Department, Technology Faculty, Marmara University, Maltepe, Istanbul, Turkey. Electronic address:

Background: To address critical security challenges in the Internet of Medical Things (IoMT), this study develops a feature selection framework to improve detection accuracy and computational efficiency in IoMT cybersecurity. By optimizing feature selection, the framework aims to enhance the security and operational integrity of real-time healthcare systems.

Method: This study integrates Random Subset Feature Selection (RSFS) with Correlation Feature Selection (CFS) to create a novel feature selection framework tailored to IoMT datasets.

View Article and Find Full Text PDF

Providing security to Internet of Medical Things (IoMT) is significant worldwide problem for future generations its implementation to be successful. The traditional security methodologies developed for IoMT struggles with the specific issues of high false positives and lower detection rate. Therefore, the proposed work aims to develop a ground-breaking intrusion detection model, named as, Group Teaching Optimized Probabilistic Deep Auto-Encoder (GTPDA) for increasing the security of IoMT networks.

View Article and Find Full Text PDF

Ensuring the integrity assessment of IoT medical sensors using hesitant fuzzy sets.

Health Informatics J

November 2024

College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.

The Internet of Medical Things (IoMT) is transforming healthcare systems, but concerns about device integrity and sensitive data are growing. The study aims to develop a framework for evaluating and prioritizing integrity schemes in healthcare for IoT-based medical sensor devices, addressing the challenges of selecting the right authentication solution due to its complexity and intricacy. A unified health-hesitant fuzzy expert system for IoMT sensor integrity assessment in Saudi Arabia is described in this paper.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!