A huge quantity of toxic hexavalent chromium (Cr-VI or Cr) was released into the environment through mine effluent at the South Kaliapani chromite mining area during different mining activities. The present in situ bioremediation approach was conducted to assess the remediation potential of a well-known aquatic weed water hyacinth (Eichhornia crassipes (Mart.) Solms-Laub) for attenuating Cr(VI) from mine wastewater. The study correlates the bio-concentration factors (BCF) of Cr with the reduction percentage. The percent reduction of Cr content in mine effluent was maximum (53.5%) at 100 days after treatment (DAT) followed by 40.7% at 75 DAT after passage through 2000 sq. ft area covering four water hyacinth-populated (1350 plants) ponds. Reduction in Cr content of OMC discharged mine effluent varies with plant age as well as with the distance of passage. A constant increase in root biomass was recorded with increased passage distance and days of treatment of contaminated mine effluent. The plants could not survive after 125 days of treatment but could show an increasing trend in shoot biomass up to 100 DAT. After 75 days of treatment, it was noted that Cr concentration in roots decreased from 200 to 148 ppm and from 76 to 21 ppm in shoots after passage through the 2000 sq. ft area at 100 DAT. Water hyacinth roots exhibit maximum Cr bioaccumulation at 75 DAT, whereas this was highest in shoots at 100 DAT.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-25294-0DOI Listing

Publication Analysis

Top Keywords

mine effluent
20
100 dat
12
crassipes mart
8
mart solms-laub
8
hexavalent chromium
8
effluent south
8
south kaliapani
8
water hyacinth
8
reduction content
8
mine
6

Similar Publications

The acid mine drainage (AMD) is characterized by its highly acidic nature and elevated concentrations of metal ions, thereby exerting significant impacts on both human health and the environment. This study employed a dispersed alkaline substrate (DAS) consisting of thermal activation magnesite and pine shavings for the treatment of AMD. The investigation focused on determining the optimal thermal activation conditions of magnesite, evaluating the effectiveness of the DAS in regulating acidity and removing metal ions from AMD, identifying critical factors influencing treatment efficiency, and conducting toxicity assessment on the effluent.

View Article and Find Full Text PDF

Fundamentals of bio-based technologies for selective metal recovery from bio-leachates and liquid waste streams.

Front Bioeng Biotechnol

January 2025

Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, Austria.

The number of metal-containing waste streams resulting from electronic end-of life products, metallurgical by-products, and mine tailings to name but a few, is increasing worldwide. In recent decades, the potential to exploit these waste streams as valuable secondary resources to meet the high demand of critical and economically important raw materials has become more prominent. In this review, fundamental principles of bio-based metal recovery technologies are discussed focusing on microbial metabolism-dependent and metabolism-independent mechanisms as sustainable alternatives to conventional chemical metal recovery methods.

View Article and Find Full Text PDF

Efficient removal of TcO from radioactive effluents while recovering drinking water remains a challenge. Herein, an excellent ReO (a nonradioactive surrogate of TcO ) scavenger is presented through covalently bonding imidazolium poly(ionic liquids) polymers with an ionic porous aromatic framework (iPAF), namely iPAF-P67, following an adsorption-site density-addition strategy. It shows rapid sorption kinetics, high uptake capacity, and exceptional selectivity toward ReO .

View Article and Find Full Text PDF

Chronic Radium-226 Bioaccumulation and Toxicity in the Aquatic Invertebrate Daphnia magna.

Arch Environ Contam Toxicol

January 2025

Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.

Mining operations in Canada, including uranium mining and milling, generate by-products containing radionuclides, including radium-226 (Ra), a long-lived, bioaccumulative calcium (Ca) analog. Despite strict discharge regulations, there is limited evidence to suggest that current thresholds for Ra adequately protect aquatic organisms. Furthermore, Canada lacks a federal water quality guideline for Ra, underscoring the need for protective limits to safeguard aquatic ecosystems.

View Article and Find Full Text PDF

Underground Reservoirs Regulate the Composition and Metabolism of Microbial Community in Coal Mine Water.

ACS Omega

December 2024

State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China.

Article Synopsis
  • Underground reservoirs in coal mines are effective in purifying mine water, significantly reducing chemical oxygen demand (COD) and regulating water chemistry.
  • The study analyzed influent and effluent samples from seven mining areas, noting that improvements in water quality can alter microbial community composition and metabolic activity.
  • Effluent samples showed higher concentrations of specific metabolites linked to various metabolic pathways, revealing important connections between water treatment processes and changes in microbial ecology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!