Genome-Scale Analysis Reveals Extensive Diversification of Voltage-Gated K+ Channels in Stem Cnidarians.

Genome Biol Evol

Department of Biology and Huck Institutes for the Life Sciences, Penn State University, University Park, Pennsylvania, USA.

Published: March 2023

Ion channels are highly diverse in the cnidarian model organism Nematostella vectensis (Anthozoa), but little is known about the evolutionary origins of this channel diversity and its conservation across Cnidaria. Here, we examined the evolution of voltage-gated K+ channels in Cnidaria by comparing genomes and transcriptomes of diverse cnidarian species from Anthozoa and Medusozoa. We found an average of over 40 voltage-gated K+ channel genes per species, and a phylogenetic reconstruction of the Kv, KCNQ, and Ether-a-go-go (EAG) gene families identified 28 voltage-gated K+ channels present in the last common ancestor of Anthozoa and Medusozoa (23 Kv, 1 KCNQ, and 4 EAG). Thus, much of the diversification of these channels took place in the stem cnidarian lineage prior to the emergence of modern cnidarian classes. In contrast, the stem bilaterian lineage, from which humans evolved, contained no more than nine voltage-gated K+ channels. These results hint at a complexity to electrical signaling in all cnidarians that contrasts with the perceived anatomical simplicity of their neuromuscular systems. These data provide a foundation from which the function of these cnidarian channels can be investigated, which will undoubtedly provide important insights into cnidarian physiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989356PMC
http://dx.doi.org/10.1093/gbe/evad009DOI Listing

Publication Analysis

Top Keywords

voltage-gated channels
16
diverse cnidarian
8
anthozoa medusozoa
8
channels
7
cnidarian
6
voltage-gated
5
genome-scale analysis
4
analysis reveals
4
reveals extensive
4
extensive diversification
4

Similar Publications

Purifying membrane proteins has been the limiting step for studying their structure and function. The challenges of the process include the low expression levels in heterologous systems and the requirement for their biochemical stabilization in solution. The human voltage-gated proton channel (hH1) is a good example of that: the published protocols to express and purify hH1 produce low protein quantities at high costs, which is an issue for systematically characterizing its structure and function.

View Article and Find Full Text PDF

Vitamin D augments insulin secretion via calcium influx and upregulation of voltage calcium channels: Findings from INS-1 cells and human islets.

Mol Cell Endocrinol

January 2025

Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah United Arab Emirates.

Vitamin D (VD) has been implicated in regulating insulin secretion and pancreatic β-cell function. Yet, the underlying molecular mechanism of VD in glucose homeostasis is not fully understood. This study investigates the effect of VD in regulating insulin secretion and pancreatic β-cell function.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

Burn-related neuropathic pain (BRNP) can arise following burn-induced nerve damage, affects approximately 6% of burned human patients and can result in chronic pain. Although widely studied in humans, data on BRNP or its treatment in animals is lacking. A 4-year-old domestic shorthair cat was presented with an infected, non-healing wound suspected to be a caustic burn.

View Article and Find Full Text PDF

A forward genetic screen identifies potassium channel essentiality in SHH medulloblastoma maintenance.

Dev Cell

January 2025

Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:

Distinguishing tumor maintenance genes from initiation, progression, and passenger genes is critical for developing effective therapies. We employed a functional genomic approach using the Lazy Piggy transposon to identify tumor maintenance genes in vivo and applied this to sonic hedgehog (SHH) medulloblastoma (MB). Combining Lazy Piggy screening in mice and transcriptomic profiling of human MB, we identified the voltage-gated potassium channel KCNB2 as a candidate maintenance driver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!