Several key plant hormones are synthesised in the shoot and are advected within the phloem to the root tip. In the root tip, these hormones regulate growth and developmental processes, and responses to environmental cues. However, we lack understanding of how environmental factors and biological parameters affect the delivery of hormones to the root tip. In this study, we build on existing models of phloem flow to develop a mathematical model of sugar transport alongside the transport of a generic hormone. We derive the equations for osmotically driven flow in a long, thin pipe with spatially varying membrane properties to capture the phloem loading and unloading zones. Motivated by experimental findings, we formulate solute membrane transport in terms of passive and active components, and incorporate solute unloading via bulk flow (i.e. advection with the water efflux) by including the Staverman reflection coefficient. We use the model to investigate the coupling between the sugar and hormone dynamics. The model predicts that environmental cues that lead to an increase in active sugar loading, an increase in bulk flow sugar unloading or a decrease in the relative root sugar concentration result in an increase in phloem transport velocity. Furthermore, the model reveals that such increases in phloem transport velocity result in an increase in hormone delivery to the root tip for passively loaded hormones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2023.111415 | DOI Listing |
J Cell Sci
January 2025
Institute of Molecular Biosciences, University of Graz, Graz, Austria.
White adipose tissue (WAT) comprises a plethora of cell types beyond adipocytes forming a regulatory network that ensures systemic energy homeostasis. Intertissue communication is facilitated by metabolites and signaling molecules that are spread by vasculature and nerves. Previous works indicated that WAT responds to environmental cues by adapting the abundance of these "communication routes", however, high intra-tissue heterogeneity questions the informative value of bulk or single cell analyses and underscores the necessity of whole-mount imaging.
View Article and Find Full Text PDFInt J Clin Health Psychol
January 2025
Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
Fear extinction is the foundation of exposure therapy for anxiety and phobias. However, the stability of extinction memory diminishes over time, coinciding with fear recovery. To augment long-term extinction retention, the temporal distribution of extinction learning sessions is critical.
View Article and Find Full Text PDFZoological Lett
January 2025
Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan.
Background: Sleep is a conserved physiological phenomenon across species. It is mainly controlled by two processes: a circadian clock that regulates the timing of sleep and a homeostat that regulates the sleep drive. Even cnidarians, such as Hydra and jellyfish, which lack a brain, display sleep-like states.
View Article and Find Full Text PDFPsychon Bull Rev
January 2025
Boston University, Boston, USA.
Individuals with "agrammatic" receptive aphasia have long been known to rely on semantic plausibility rather than syntactic cues when interpreting sentences. In contrast to early interpretations of this pattern as indicative of a deficit in syntactic knowledge, a recent proposal views agrammatic comprehension as a case of "noisy-channel" language processing with an increased expectation of noise in the input relative to healthy adults. Here, we investigate the nature of the noise model in aphasia and whether it is adapted to the statistics of the environment.
View Article and Find Full Text PDFSci Rep
January 2025
RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway.
Periodic sensory inputs entrain oscillatory brain activity, reflecting a neural mechanism that might be fundamental to temporal prediction and perception. Most environmental rhythms and patterns in human behavior, such as walking, dancing, and speech do not, however, display strict isochrony but are instead quasi-periodic. Research has shown that neural tracking of speech is driven by modulations of the amplitude envelope, especially via sharp acoustic edges, which serve as prominent temporal landmarks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!