The first objective of this study is to present unique field data on a three-year pilot test during which air containing 8 mol% O(g) was injected as a cushion gas into a natural gas reservoir, a carbonate-cemented sandstone aquifer located in the Paris Basin (France). 10-year system survey showed that: the oxygen was fully depleted several months after injection completion, meanwhile CO(g) was detected around 2-6 mol%; the pH decreased from 8 to 6, while reducing conditions shifted to mildly oxidizing ones with increasing concentration of sulfates in equilibrium with gypsum. 3 years after injection completion, the pH gradually returned to its near initial state and sulfates were reduced by 2 to 3 times. The second objective is to develop a multiphase reactive transport model based on the field data. Simulations were constructed using the HYTEC reactive transport code, progressing from 0D-batch to 2D-reservoir configurations. The model reproduced the gas-water-rock reactive sequence: 1/ full depletion of the injected O(g) due to pyrite oxidation, 2/ leading to acidity production and dissolved sulfates, 3/ acidity buffering by calcite dissolution, 4/ followed by gypsum precipitation and CO(g) exsolution. The model demonstrated that pyrite kinetics was the most significant factor governing not only the amount of O(g), CO(g) and dissolved minerals, but also the spatial extent of these chemical reactions and, hence, the gas spread inside the reservoir. The formulated advective Damköhler number for oxygen consumption indicated advection- and reaction-dominant regimes explaining the gas composition and extension. The developed field-based model could be used as a workflow for other gas storage facilities, e.g. biomethane, compressed air, and CO. For underground biomethane storage, the O(g) contents recommended in Europe, i.e. the EASEE-gas specification 2005-001-02, should have a low impact on gas composition and reservoir geochemistry when the reservoir contains efficient pH-buffers such as calcite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.161657 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!