Articular osteochondral injury is a common and frequently occurring disease in orthopedics that is caused by aging, disease, and trauma. The cytokine interleukin-1β (IL-1β) is a crucial mediator of the inflammatory response, which exacerbates damage during chronic disease and acute tissue injury. Human Wharton's jelly mesenchymal stem cell (HWJMSC) extracellular vesicles (HWJMSC-EVs) have been shown to promote cartilage regeneration. The study aimed to investigate the influence and mechanisms of HWJMSC-EVs on the viability, apoptosis, and cell cycle of IL-1β-induced chondrocytes. HWJMSC-EVs were isolated by Ribo™ Exosome Isolation Reagent kit. Nanoparticle tracking analysis was used to determine the size and concentration of HWJMSC-EVs. We characterized HWJMSC-EVs by western blot and transmission electron microscope. The differentiation, viability, and protein level of chondrocytes were measured by Alcian blue staining, Cell Counting Kit-8, and western blot, respectively. Flow cytometer was used to determine apoptosis and cell cycle of chondrocytes. The results showed that HWJMSCs relieved IL-1β-induced chondrocyte injury by inhibiting apoptosis and elevating viability and cell cycle of chondrocyte, which was reversed with exosome inhibitor (GW4869). HWJMSC-EVs were successfully extracted and proven to be uptake by chondrocytes. HWJMSC-EVs ameliorate IL-1β-induced chondrocyte injury by inhibiting cell apoptosis and elevating viability and cycle of cell, but these effects were effectively reversed by knockdown of transferrin receptor (TFRC). Notably, using bone morphogenetic protein 2 (BMP2) pathway agonist and inhibitor suggested that HWJMSC-EVs ameliorate IL-1β-induced chondrocyte injury through activating the BMP2 pathway via up-regulation TFRC. Furthermore, over-expression of runt-related transcription factor 2 (RUNX2) reversed the effects of BMP2 pathway inhibitor promotion of IL-1β-induced chondrocyte injury. These results suggested that HWJMSC-EVs ameliorate IL-1β-induced chondrocyte injury by regulating the BMP2/RUNX2 axis via up-regulation TFRC. HWJMSC-EVs may play a new insight for early medical interventions in patients with articular osteochondral injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2023.110604 | DOI Listing |
J Mater Chem B
January 2025
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions.
View Article and Find Full Text PDFTrends Cell Biol
December 2024
Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA. Electronic address:
Voltage-gated sodium channels (VGSCs) are best known for their role in the generation and propagation of action potentials in neurons, muscle cells, and cardiac myocytes, which have traditionally been labeled as 'excitable'. However, emerging evidence challenges this traditional perspective. It is now clear that VGSCs are also expressed in a broad spectrum of cells outside the neuromuscular realm, where they regulate diverse cellular functions.
View Article and Find Full Text PDFBiomaterials
December 2024
School of Medicine, Nankai University, Tianjin, 300071, PR China; Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, PR China. Electronic address:
The mechanical mismatch of scaffold matrix-mesenchymal stem cells (MSCs) has been a longstanding issue in the clinical application of MSC-based therapy for articular cartilage (AC) regeneration. Existing tissue-engineered scaffolds underestimate the importance of the natural chondrocyte pericellular matrix (PCM). Here, we reveal the temporal and spatial characteristics of collagen distribution around the chondrocytes.
View Article and Find Full Text PDFMol Ther
December 2024
Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, D-66421, Homburg/Saar, Germany. Electronic address:
Despite various available treatments, highly prevalent osteoarthritis cannot be cured in patients. In light of evidence showing mitochondria dysfunction during the disease progression, our goal was to develop a novel therapeutic concept based on the transplantation of mitochondria as platforms to deliver recombinant adeno-associated viral (rAAV) gene vectors with a potency for osteoarthritis. For the first time to our best knowledge, we report the successful creation of a safe mitochondria/rAAV system effectively promoting the overexpression of a candidate insulin-like growth factor I (IGF-I) by administration to autologous human osteoarthritic articular chondrocytes versus control conditions (reporter mitochondria/rAAV lacZ system, rAAV-free system, absence of mitochondria transplantation) (up to 8.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
The demand for cartilage reconstruction in the head and neck region arises frequently due to trauma, malignancies, and hereditary diseases. Traditional tissue engineering produces cartilage from a small biopsy by combining biomaterials and expanded cells. However, this top-down approach is associated with several limitations, including the non-uniform distribution of cells, lack of physiological cell-cell and cell-matrix interactions, and compromised mechanical properties and tissue architecture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!