Background: Bacteriophage therapy has a long history in the treatment of musculoskeletal and skin/soft tissue infections, particularly in the former Soviet Union. Due to the global rise in antimicrobial resistance, phage application has experienced a resurgence of interest and expanded to many countries.

Objectives: This narrative review aims to provide clinical microbiologists, infectious disease specialists and surgeons a brief history of bacteriophage therapy for human musculoskeletal and soft tissue infections, as well as data on current practices and ongoing clinical studies.

Sources: A search of PubMed and Clinicaltrials.gov was performed to identify relevant studies. Search terms were 'bacteriophage therapy', 'musculoskeletal infection' and 'soft tissue infection'. The bibliography of all retrieved articles was checked for additional relevant references.

Content: Past and current data on the use of bacteriophage therapy for human musculoskeletal, skin and soft tissue infections are evaluated. Moreover, we present the clinical trials registered in public databases. Based on current clinical experience and data, several scenarios of bacteriophage application for human therapy are examined. Finally, we discuss legislative hurdles in the regulatory approval process and present future perspectives for bacteriophage therapy.

Implications: Antimicrobial resistance is one of the most important global public health challenges. Several different alternatives to conventional antibiotics are under development; bacteriophage therapy is one of them. Currently, therapeutic use of phages is restrained by regulatory hurdles and largely limited to sporadic authorization in compassionate use or under temporary approval as new drugs in Europe and the US. Although bacteriophage therapy seems to be safe and clinical results of phage treatment are promising, future data from high-quality (randomized controlled) trials could provide a better understanding of the reasonable minimal criteria required for expansion of bacteriophage therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmi.2023.01.011DOI Listing

Publication Analysis

Top Keywords

bacteriophage therapy
28
tissue infections
16
therapy human
12
human musculoskeletal
12
bacteriophage
9
musculoskeletal skin/soft
8
skin/soft tissue
8
antimicrobial resistance
8
soft tissue
8
therapy
7

Similar Publications

Enterohemorrhagic (EHEC) is a common pathotype of that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains.

View Article and Find Full Text PDF

The Combination of Phage Therapy and β-Lactam Antibiotics for the Effective Treatment of Infections.

Int J Mol Sci

December 2024

Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.

A phage-antibiotic synergy could be an alternative in urinary tract infection (UTI) therapy, as it leads to the elimination of bacteria and to the reduction in variants resistant to phages and antibiotics. The aims of the in vitro study were to determine whether phages vB_Efa29212_2e and vB_Efa29212_3e interact synergistically with selected antibiotics in the treatment of infections, to optimize antibiotic concentrations and phage titers for the most effective combinations, and to assess their impact on the number of spontaneous resistant variants and on the phages' reproductive cycles. The modified double-layer disc diffusion method, checkboard, time-kill assays, one-step growth method and the double agar overlay plaque assay were implemented.

View Article and Find Full Text PDF

The impact of antibiotic therapy on the spread of antibiotic resistance genes (ARGs) and its relationship to gut microbiota remains unclear. This study investigated changes in ARGs, mobile genetic elements (MGEs), and gut microbial composition following tilmicosin administration in pigs. Thirty pigs were randomly divided into control (CK), low-concentration (0.

View Article and Find Full Text PDF

Avian pathogenic Escherichia coli-targeting phages for biofilm biocontrol in the poultry industry.

Vet Microbiol

January 2025

Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland. Electronic address:

Avian pathogenic Escherichia coli (APEC) is a principal etiologic agent of avian colibacillosis, responsible for significant economic losses in the poultry industry due to high mortality and disease treatment with antibiotics. APEC and its ability to form biofilms on food and processing surfaces contributes to its persistence within farms. Bacteriophages are promising antibacterial agents for combating APEC.

View Article and Find Full Text PDF

The increasing threat of antimicrobial-resistant bacteria, particularly Staphylococcus aureus, which rapidly develops multidrug resistance and commonly colonizes wound surfaces, demands innovative strategies. Phage-encoded endolysins offer a dual-purpose approach as topical therapies for infectious skin wounds and synergistic agents to reduce high-dose antibiotic dependence. This study explores recombinant CHAPk (rCHAPk), efficiently synthesized within 3 h, displaying broad-spectrum antibacterial activity against 11 Gram-positive strains, including resistant variants, with rapid bactericidal kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!