AI Article Synopsis

  • - The study investigates how temperature affects the toxicity of three insecticides (beta-cyfluthrin, chlorpyrifos, and avermectin) on the lizard Eremias argus, finding that higher temperatures can reduce the toxicity of one while increasing another's.
  • - Lizards exhibit thermoregulatory behavior to lower their body temperature and mitigate the effects of sub-lethal doses of insecticides, demonstrating a form of “self-rescue” to diminish potential harm.
  • - Analysis of metabolites and insecticide residues reveals that temperature-dependent toxicity impacts the lizards through biochemical changes, highlighting the need for improved ecological risk assessments of agrochemicals, especially in light of climate change.

Article Abstract

In this study, the temperature-dependent chemical toxicity of three insecticides and the resulting thermoregulatory (TR) behavior of the lizard Eremias argus have been consolidated into the current risk assessment framework. According to acute dermal toxicity assays, an increase of ambient temperature from 15 °C to 35 °C decreased the acute dermal toxicity of beta-cyfluthrin (BC) but increased the toxicity of chlorpyrifos (CPF). The toxicity of avermectin (AVM) did not show significant temperature-dependent responses. Based on thermal preference trials, lizards changed their body temperature via TR behavior to adaptively reduce toxicity under sub-lethal doses, which can be understood as a "self-rescue" behavior attenuating lethal effects. However, the risk quotient indicated that the effectiveness of this "self-rescue" behavior is limited. Metabolomics analysis showed that six different metabolites (i.e., creatine, glutamate, succinate, N-acetylaspartate, acetylcholine, and lactate) contributed to TR behavior changes. Biochemical assays and insecticide residue results demonstrated that the temperature-dependent toxicity of BC, CPF, and AVM affected lizards in the three aspects of biotransformation, oxidative stress, and neurometabolic interference. This work clarifies the ecotoxicological impacts of representative insecticides on reptiles from toxicological understanding to risk relevance. This knowledge may improve ecological predictions of agrochemical applications in the context of global climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2023.107742DOI Listing

Publication Analysis

Top Keywords

toxicity
8
temperature-dependent toxicity
8
thermoregulatory behavior
8
eremias argus
8
acute dermal
8
dermal toxicity
8
"self-rescue" behavior
8
behavior
6
consolidation temperature-dependent
4
toxicity thermoregulatory
4

Similar Publications

Erlotinib-induced Perioral Lesions Resembling Scleroderma.

Acta Dermatovenerol Croat

November 2024

Constantin A. Dasanu MD, PhD, Lucy Curci Cancer Center, Eisenhower Health, 39000 Bob Hope Dr, Rancho Mirage, CA 92270 , USA;

Erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is currently used in the therapy of several solid malignancies. This agent has been associated with several dermatological side-effects, the most common being papulo-pustular acneiform rash. Herein we describe a unique skin effect in a patient treated with erlotinib for non-small cell lung cancer.

View Article and Find Full Text PDF

Toxic workplace environments, especially those involving gaslighting, are known to contribute to stress and excessive work habits, such as workaholism, which may hinder a nurse's agility-an essential skill in adapting to fast-paced healthcare environments. However, the interplay between workplace gaslighting, workaholism, and agility in nursing remains underexplored. This study aims to investigate the relationship between workplace gaslighting, workaholism, and agility among nurses, focusing on how gaslighting moderates this relationship.

View Article and Find Full Text PDF

Background: Amiodarone, a common antiarrhythmic drug, is known for its severe side effects, including pulmonary toxicity, which involves oxidative stress and apoptosis. Artemisinin, an antimalarial drug, has shown cytoprotective properties by inhibiting oxidative stress and apoptosis. This study investigated the protective effects of artemisinin against amiodarone-induced toxicity in human bronchial epithelial cells (BEAS-2B) and mouse models.

View Article and Find Full Text PDF

HER2-targeted ADC DX126-262 combined with chemotherapy demonstrates superior antitumor efficacy in HER2-positive gastric cancer.

Am J Cancer Res

December 2024

Hangzhou DAC Biotechnology Co., Ltd. No. 369 Qiaoxin Road, Qiantang District, Hangzhou 310018, Zhejiang, China.

Gastric cancer is a common malignant tumor with high incidence and mortality. The overexpression of Human epidermal growth factor receptor 2 (HER2) is associated with increased metastatic potential and poor clinical outcome in gastric cancer. Despite the proven clinical response rates of approved HER2-targeted therapies, including Trastuzumab combined with chemotherapy, their limited long-term clinical benefits and inevitable disease progression still pose significant challenges to the clinical treatment of gastric cancer.

View Article and Find Full Text PDF

Evaluating Avacopan in the Treatment of ANCA-Associated Vasculitis: Design, Development and Positioning of Therapy.

Drug Des Devel Ther

January 2025

Center of Expertise for Lupus-, Vasculitis- and Complement-Mediated Systemic Diseases (Luvacs), Department of Internal Medicine - Nephrology Section, Leiden University Medical Center, Leiden, the Netherlands.

Recently, avacopan has been approved for the treatment of ANCA-associated vasculitis (AAV). Avacopan is an inhibitor of the C5a-receptor, which plays an important role in chemotaxis and the amplification loop of inflammation in AAV. In the most recent, international guidelines avacopan is recommended as steroid-sparing agents for the management of AAV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!