Coulomb interactions play a crucial role in a wide array of processes in aqueous solutions but present conceptual and computational challenges to both theory and simulations. We review recent developments in an approach addressing these challenges─local molecular field (LMF) theory. LMF theory exploits an exact and physically suggestive separation of intermolecular Coulomb interactions into strong short-range and uniformly slowly varying long-range components. This allows us to accurately determine the averaged effects of the long-range components on the short-range structure using effective single particle fields and analytical corrections, greatly reducing the need for complex lattice summation techniques used in most standard approaches. The simplest use of these ideas in aqueous solutions leads to the short solvent (SS) model, where both solvent-solvent and solute-solvent Coulomb interactions have only short-range components. Here we use the SS model to give a simple description of pairing of nucleobases and biologically relevant ions in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.2c06988 | DOI Listing |
Langmuir
January 2025
School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
Ofloxacin, a commonly prescribed antibiotic, raises serious environmental concerns due to its persistence in aquatic systems. This study offers new insights into the environmental behavior of ofloxacin and its interactions with carbon-based adsorbents with the aim of enhancing our understanding of its removal mechanisms via adsorption processes. Using a comprehensive computational approach, we analyzed the speciation, pK values, and solubility of ofloxacin across various pH conditions, accounting for all four microspecies, including the often-overlooked neutral form.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA.
The exploration of quantum phases in moiré systems has drawn intense experimental and theoretical efforts. The realization of honeycomb symmetry has been a recent focus. The combination of strong interaction and honeycomb symmetry can lead to exotic electronic states such as fractional Chern insulator, unconventional superconductor, and quantum spin liquid.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Geotechnical Engineering, Faculty of Civil Engineering, Tishreen University, Latakia, Syria.
This study investigates the performance of a skirt sand pile (SSP) system beneath a circular shallow footing using three-dimensional finite element analysis calibrated against a large-scale experimental setup. The SSP, measuring 8.00Â m in length and 1.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!