AI Article Synopsis

  • Food contamination from toxic fungi is a major global issue that can lead to serious health risks, specifically due to mycotoxins.
  • Lactic acid bacteria (LAB) have shown promising antifungal and anti-mycotoxin effects, particularly in strains isolated from Brazilian table olives.
  • The study found that certain LAB strains effectively inhibited fungal growth and reduced the production of harmful mycotoxins like aflatoxin B1 (AFB1) and ochratoxin A (OTA), demonstrating their potential as natural preservatives in food.

Article Abstract

Food and feed contamination by fungi, especially by toxigenic ones, is a global concern because it can pose serious health problems when the production of mycotoxins is involved. Lactic acid bacteria (LAB), well-known for fermenting foods, have been gaining attention for their antifungal and anti-mycotoxin properties. This work tested 14 LAB strains isolated from naturally fermented Brazilian table olives for growth inhibition of , , , and . The strains subsp. CCMA 1764, CCMA 1762, and CCMA 1768 showed the strongest antifungal activity, being more active against . Aflatoxin B1 (AFB1), ochratoxin A (OTA), and patulin (PAT) production was reduced essentially by mycelia growth inhibition. The main organic acids detected in the cell free supernatant (CFS) were lactic and acetic acids. Tested LAB exhibited adsorption capacity against AFB1 (48-51%), OTA (28-33%), and PAT (23-24%). AFB1 was converted into aflatoxin B2a (AFB2a) by lactic and acetic acids produced by the strain CCMA 1764. A similar conversion was observed in solutions of these organic acids (0.1 M). These findings demonstrate the potential of isolated LAB strains as natural agents to control toxigenic fungi and their mycotoxins in fermented products, such as table olives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866039PMC
http://dx.doi.org/10.3390/toxins15010071DOI Listing

Publication Analysis

Top Keywords

table olives
12
brazilian table
8
lactic acid
8
acid bacteria
8
antifungal activity
8
tested lab
8
lab strains
8
growth inhibition
8
ccma 1764
8
organic acids
8

Similar Publications

Olive oil and table olives are considered staples of the Mediterranean diet and have been associated with various health benefits. Literature reports that the final composition of the olive drupe is greatly affected by varietal and agronomic factors, each contributing to a different degree. To that end, the objective of the study was the evaluation of the contribution of different agronomic conditions applied to two Greek olive varieties (Koroneiki, Mastoidis) using a holistic approach of in vitro methods.

View Article and Find Full Text PDF

The invasive emerald ash borer (Agrilus planipennis Fairmaire) (EAB) has been devastating North American ash (Fraxinus spp.) resources for over 2 decades. In its native range, EAB attacks and kills primarily stressed ash trees.

View Article and Find Full Text PDF

High Resolution-Magic Angle Spinning (HR-MAS) solid-state NMR spectroscopy is finding increasing application in the analysis of solid foods, bypassing the need for complicated solvent extraction procedures. In the present protocol, we report a simple analytical approach based on HR-MAS NMR spectroscopy for the phenolic profiling of olive fruits, flesh, or skin. This approach allows the facile characterization of phenolic compounds in olive fruits cultivated for extra-virgin olive oil production as a function of maturation and variety, in addition to processing technology for table olives.

View Article and Find Full Text PDF

Table olive processing implies losses of mineral nutrients and increased sodium levels due to using brine during fermentation and storage. This study investigated fortifying traditional table olives with mixtures of KCl, CaCl, and MgCl during packaging to enhance mineral content while reducing NaCl. This research analyses the distribution of cations between olives and brines and employed the Response Surface Methodology (RSM) to model mineral content and their contributions to the Reference Daily Intake (RDI).

View Article and Find Full Text PDF

The process of biofilm formation during table olive fermentation is crucial to turning this fermented vegetable into a probiotic food. Some phenolic compounds have been described as important quorum-sensing molecules during biofilm development. The present in vitro study examined the effects of three phenolic compounds widely found in table olive fermentations (Oleuropein 0-3000 ppm, Hydroxytyrosol 0-3000 ppm, and Tyrosol 0-300 ppm) on the development of single biofilm by diverse microorganisms isolated from table olives ( 13B4, Lp119, and LPG1; Lp15 and LAB23; and yeasts Y12, Y13, and Y18).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!