Aflatoxins (AFs) frequently contaminate food and animal feeds, especially in (sub) tropical countries. If animals consume contaminated feeds, AFs (mainly aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2) and their major metabolites aflatoxin M1 (AFM1) and M2 (AFM2)) can be transferred to edible tissues and products, such as eggs, liver and muscle tissue and milk, which ultimately can reach the human food chain. Currently, the European Union has established a maximum level for AFM1 in milk (0.05 µg kg). Dietary adsorbents, such as bentonite clay, have been used to reduce AFs exposure in animal husbandry and carry over to edible tissues and products. To investigate the efficacy of adding bentonite clay to animal diets in reducing the concentration of AFB1, AFB2, AFG1, AFG2, and the metabolites AFM1 and AFM2 in animal-derived foods (chicken muscle and liver, eggs, and cattle milk), chicken and cattle plasma and cattle ruminal fluid, a sensitive and selective ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been developed. High-throughput sample preparation procedures were optimized, allowing the analysis of 96 samples per analytical batch and consisted of a liquid extraction using 1% formic acid in acetonitrile, followed by a further clean-up using QuEChERS (muscle tissue), QuEChERS in combination with Oasis Ostro (liver tissue), Oasis Ostro (egg, plasma), and Oasis PRiME HLB (milk, ruminal fluid). The different procedures were validated in accordance with European guidelines. As a proof-of-concept, the final methods were used to successfully determine AFs concentrations in chicken and cattle samples collected during feeding trials for efficacy and safety evaluation of mycotoxin detoxifiers to protect against AFs as well as their carry-over to animal products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866995 | PMC |
http://dx.doi.org/10.3390/toxins15010037 | DOI Listing |
Mol Diagn Ther
January 2025
Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy.
Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.
Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.
Theor Appl Genet
January 2025
Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France.
Phenomic selection based on parental spectra can be used to predict GCA and SCA in a sparse factorial design. Prediction approaches such as genomic selection can be game changers in hybrid breeding. They allow predicting the genetic values of hybrids without the need for their physical production.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania.
The expansion of single-cell analytical techniques has empowered the exploration of diverse biological questions at the individual cells. Droplet-based single-cell RNA sequencing (scRNA-seq) methods have been particularly widely used due to their high-throughput capabilities and small reaction volumes. While commercial systems have contributed to the widespread adoption of droplet-based scRNA-seq, their relatively high cost limits the ability to profile large numbers of cells and samples.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Computer-Aided Design and Test (CADT) Research Group, McMaster University, Hamilton, ON L8S 4L8, Canada.
A parallelized field-programmable gate array (FPGA) architecture is proposed to realize an ultra-fast, compact, and low-cost dual-channel ultra-wideband (UWB) pulsed-radar system. This approach resolves the main shortcoming of current FPGA-based radars, namely their low processing throughput, which leads to a significant loss of data provided by the radar receiver. The architecture is integrated with an in-house UWB pulsed radar operating at a sampling rate of 20 gigasamples per second (GSa/s).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Lens-free on-chip microscopy (LFOCM) is a powerful computational imaging technology that combines high-throughput capabilities with cost efficiency. However, in LFOCM, the phase recovered by iterative phase retrieval techniques is generally wrapped into the range of -π to π, necessitating phase unwrapping to recover absolute phase distributions. Moreover, this unwrapping process is prone to errors, particularly in areas with large phase gradients or low spatial sampling, due to the absence of reliable initial guesses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!