Rapid Determination of Selected PFAS in Textiles Entering the Waste Stream.

Toxics

School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.

Published: January 2023

Due to new European legislation, products entering the waste stream containing some perfluoro alkyl substances (PFAS) are subject to "low persistent organic pollutant concentration limits". Concentrations of restricted PFAS must be below this limit for them to be legally recycled or disposed of. A rapid extraction and clean-up method was developed for the determination of 21 PFAS in various polymers used in soft furnishings and upholstery. The optimised method used vortexing and ultrasonication in methanol (0.1% NHOH), followed by a dilution and syringe filter clean-up step. PFAS were subsequently determined via UPLC-TripleTOF/MS. Good recoveries (80-120%) of target analytes were obtained with tall and narrow chromatogram peaks. The method was validated using control matrix samples spiked with target analytes. Repeated measurements of concentrations of target compounds showed good agreement with the spiked concentrations demonstrating good accuracy and precision. The resultant extracts provided low noise levels resulting in low limits of quantification ranging from 0.1 to 0.4 mg/kg. The developed method was applied successfully to real consumer products and it provided various advantages over traditional methods, including a substantially reduced analysis time, consumables and solvent consumption, and a high sample throughput which is critical to comply with implemented and proposed legislation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860823PMC
http://dx.doi.org/10.3390/toxics11010055DOI Listing

Publication Analysis

Top Keywords

entering waste
8
waste stream
8
target analytes
8
pfas
5
rapid determination
4
determination selected
4
selected pfas
4
pfas textiles
4
textiles entering
4
stream european
4

Similar Publications

Background: Increasing awareness of the potential environmental impact of volatile anaesthetic agents has stimulated increased use of total i.v. anaesthesia.

View Article and Find Full Text PDF

Dissolved beryllium (< 1 kDa) mobilized as a major element in groundwater in legacy mine waste.

Environ Pollut

January 2025

Applied Geochemistry, Department of Civil, Environmental and Natural Resource Engineering, Luleå University of Technology, Luleå, Sweden.

Article Synopsis
  • Research on beryllium (Be) geochemistry in terrestrial environments is complicated due to its toxicity and low environmental concentrations, but high levels were found in groundwater at a Tailings Storage Facility in Sweden.
  • A study from 2016-2024 analyzed groundwater samples and identified that over 90% of dissolved Be was truly dissolved in suboxic conditions, with significant concentrations correlated with sulfate complexes at pH levels of 6.0 to 6.4.
  • The research indicated that as pH decreases, Be concentrations are likely to rise due to long-term sulfide oxidation, while secondary minerals on the tailings shore may act as temporary barriers that can limit Be mobility.
View Article and Find Full Text PDF

Battery technology has attained a key position as an energy storage technology in decarbonization of energy systems. Lithium-ion batteries have become the dominant technology currently used in consumer appliances, electric vehicles (EVs), and industrial applications. However, lithium-ion batteries are not alike and can have different cathode chemistries which makes their recycling more complex.

View Article and Find Full Text PDF

Electroplating sludge (ES) is a hazardous waste, because it contains heavy metals. It poses severe environmental and health risk if not properly disposed. This study proposed a combined pyro-metallurgical process to separate and recover copper, nickel, chromium and iron from it.

View Article and Find Full Text PDF

Composting treatment increases the risk of microplastics pollution in process and compost products.

J Hazard Mater

January 2025

Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:

Organic compost is a significant carrier of microplastics (MPs) entering agricultural soil. However, the extent of MPs pollution during composting, a widely employed organic waste treatment technology, remains unknown. This study investigated MPs dynamic pollution characteristics during composting and compost products using agricultural wastes as raw materials and quantitatively evaluated ecological risks of MPs pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!