Understanding the influence of soil microstructure on light non-aqueous phase liquids (LNAPLs) behavior is critical for predicting the formation of residual LNAPLs under spill condition. However, the roles of soil particle and pore on LNAPLs migration and residue remains unclear. Here, the experiment simulated an LNAPLs (diesel) spill that was performed in fourteen types of soils, and the key factors affecting diesel behavior are revealed. There were significant differences between fourteen types of soils, with regard to the soil particle, soil pore, and diesel migration and residue. After 72 h of leakage, the migration distance of diesel ranged from 3.42 cm to 8.82 cm in the soils. Except for sandy soil, diesel was mainly distributed in the 0−3 cm soil layer, and the residual amounts were 7.85−26.66 g/kg. It was further confirmed from microstructure that the consistency of soil particle and volume of soil macropores (0.05−7.5 μm) are important for diesel residue in the 0−1 cm soil layer and migration distance. The large soil particles corresponding to 90% of volume fraction and volume of soil mesopores (<0.05 μm) are key factors affecting diesel residue in the 1−3 cm soil layer. The result helps to further comprehend the formation mechanism of residual LNAPLs in the soil.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863872 | PMC |
http://dx.doi.org/10.3390/toxics11010016 | DOI Listing |
Biodegradation
December 2024
Department of Civil engineering, Islamic Azad university, Mashhad Branch, Iran.
The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
The aim of the current investigation is to explore the novel application of pumpkin, papaya, and orange peels as growth substrates for microalgae cultivation, with the overarching goal of advancing a sustainable "Agro to Agro" biorefinery paradigm. The research evaluates the integration of waste management practices into microalgal production, optimizing growth parameters to maximize output. Optimal concentrations of 2.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Agronomy, Faculty of Agricultural Sciences, SGT University, Gurugram, India.
Chromium (Cr) is an ever-present abiotic stress that negatively affects crop cultivation and production worldwide. High rhizospheric Cr concentrations inhibit nutrients uptake and their translocation to aboveground parts, thus can affect the growth and development of crop plants. This experiment was designed to evaluate the effects of sole and combined zinc-lysine and iron-lysine applications on photosynthetic efficacy, antioxidative defense, oxidative stress, and nutrient uptake and translocation under Cr stress.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
Environmental consequences of petroleum mulch application are crucial in regions prone to wind erosion and desertification. This study aimed to assess the long-term effects of petroleum mulching on soil polycyclic aromatic hydrocarbon (PAH) concentrations and the associated human and ecological risk indices. These indices include incremental lifetime cancer risk (ILCR), hazard index (HI), toxic equivalent concentration (TEQ), toxic unit (TU), and risk quotient (RQ) in soil samples from Khuzestan province, Iran.
View Article and Find Full Text PDFCurr Microbiol
December 2024
Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea.
During the study of microbial diversity of forest soil in the Republic of Korea, a yellow pigment-producing, Gram-stain-negative, rod-shaped, motile bacterium was isolated and designated as strain 1W2. This strain grew at temperature of 10-37 °C, at pH of 5.0-9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!