The rising concerns about controversial food additives' potential hazardous properties require extensive yet animal-minimized testing strategies. Zebrafish embryos are the ideal in vivo model representing both human and environmental health. In this study, we exposed zebrafish embryos to eight controversial food additives. Our results indicate that Sodium Benzoate is a Cat.3 aquatic toxicant, while Quinoline Yellow is a strong teratogen. At high concentrations, non-toxic chemicals induced similar phenotypes, suggesting the impact of ionic strength and the applicability of the darkened yolk phenotype as an indicator of nephrotoxicity. Three food additives showed unpredicted bioactivities on the zebrafish embryos: Brilliant Blue could weaken the embryonic yolk, Quinoline Yellow may interfere with nutrient metabolism, and Azorubine induced precocious zebrafish hatching. In conclusion, the zebrafish embryo is ideal for high throughput chemical safety and toxicity screening, allowing systematic detection of biological effects-especially those unexpected by targeted in vitro and in silico models. Additionally, our data suggest the need to reconsider the safety status of food additives Quinoline Yellow, Brilliant Blue, Sodium Benzoate, and other controversial food additives in further studies, as well as pave the way to further applications based on the newly found properties of Brilliant Blue and Azorubine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861749PMC
http://dx.doi.org/10.3390/toxics11010008DOI Listing

Publication Analysis

Top Keywords

food additives
20
controversial food
16
zebrafish embryos
12
quinoline yellow
12
brilliant blue
12
sodium benzoate
8
food
6
zebrafish
6
additives
5
discovering novel
4

Similar Publications

A study was conducted to assess growth performance, methane (CH) emissions, and feeding behavior of feedlot steers consuming backgrounding and finishing diets with an essential oil blend (EO), monensin (Mon), and their combination (EO + Mon). The study was structured as a 2 × 2 factorial, with two feed additive treatments (Control, EO) and two monensin treatments (no Monensin, Monensin). One hundred Angus × steers were evenly distributed across each treatment into four pens, and each dietary phase consisted of four, 28-d periods.

View Article and Find Full Text PDF

High Glucose Inhibits O-GlcNAc Transferase Translocation in Early Osteoblast Differentiation by Altering Protein Phosphatase 2A Activity.

J Cell Physiol

January 2025

Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Our previous study revealed a link between O-GlcNAc transferase (OGT) localization and protein phosphatase 2A (PP2A) activity in osteoblast. Given the association of PP2A downregulation with osteoblast differentiation, we hypothesized that OGT localization changes during this process. We examined OGT localization in MC3T3-E1 cells undergoing differentiation under normal and high glucose conditions.

View Article and Find Full Text PDF

Sugar conditioning combined with nectar nonsugar compounds enhances honey bee pollen foraging in a nectarless diocious crop.

Sci Rep

January 2025

Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

Recently, it has been shown that sugar‑conditioned honey bees can be biased towards a nectarless dioecious crop as kiwifruit. The challenges for an efficient pollination service in this crop species are its nectarless flowers and its short blooming period. It is known that combined non-sugar compounds (NSCs) present in the floral products of different plants, such as caffeine and arginine, enhance olfactory memory retention in honey bees.

View Article and Find Full Text PDF

Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!