A series of 1-benzo[]chromene moieties () were synthesised under Ultrasonic irradiation and confirmed with spectral analyses. Derivative solely possessed an X-ray single crystal. The anti-proliferative efficacy of the desired molecules has been explored against three cancer cells: MCF-7, HCT-116, and HepG-2 with the cytotoxically active derivatives screened against MCF-7/ADR and normal cells HFL-1 and WI-38. Furthermore, compounds , , , , and , which possessed good potency against MCF-7/ADR, were tested as permeability glycoprotein (glycoprotein [-gp]) expression inhibitors. The attained data confirmed that , , and exhibited strong expression inhibition against the gp alongside its cytotoxic effect on MCF-7/ADR. The western blot results and Rho123 accumulation assays showed that compounds , and effectively inhibited the -gp expression and efflux function. Meanwhile, , , and induced apoptosis and accumulation of the treated MCF-7/ADR cells in the G1 phase and and in the S phase of the cell cycle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869995PMC
http://dx.doi.org/10.1080/14756366.2022.2155814DOI Listing

Publication Analysis

Top Keywords

mcf-7/adr
5
discovery benzochromene
4
benzochromene derivatives
4
derivatives example
4
example dual
4
dual cytotoxic
4
cytotoxic activity
4
activity resistant
4
resistant cancer
4
cancer cell
4

Similar Publications

Study on the Chemical Composition and Multidrug Resistance Reversal Activity of (Euphorbiaceae).

Int J Mol Sci

January 2025

Key Laboratory of Xinjiang Phytomedicine Resource and Uilization, Ministry of Education, Shihezi 832002, China.

belongs to the family Euphorbiaceae and is widely distributed in northern Xinjiang, making it a characteristic plant of the region in Xinjiang, China. The chemical composition and biological activity of have not yet been reported, although certain compounds isolated from plants in Xinjiang, China, have demonstrated exceptional multidrug resistance (MDR) reversal. This study aims to investigate the chemical components present in with the potential to reverse MDR.

View Article and Find Full Text PDF

Tetramethylpyrazine attenuates the cancer stem cell like-properties and doxorubicin resistance by targeting HMGCR in breast cancer.

Phytomedicine

January 2025

Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China. Electronic address:

Background: Tetramethylpyrazine (TMP), a key bioactive constituent derived from Ligusticum wallichii Franchat, has demonstrated efficacy in mitigating multidrug resistance (MDR) in human breast cancer (BC) cells. However, the precise mechanisms underlying its action remain poorly understood.

Purpose: Cancer stem cells (CSCs) are widely recognized as the primary contributors to MDR.

View Article and Find Full Text PDF

Background: Multidrug resistance (MDR), mainly caused by ATP-binding cassette transporters (ABCTs) efflux, makes it difficult for many anticancer drugs to treat breast cancer (BC). Phytochemicals can reverse cancer's MDR by modifying ABC transporter expression and function, as well as working synergistically with anticancer drugs to target other molecules. The reversal effect of the isoquinoline alkaloid coptisine (COP) was assessed on four breast cell lines; Two sensitive MCF-7 cell lines with positive estrogen, androgen, progesterone, and glucocorticoid receptors, as well as MDB-MB-231 cells with negative estrogen, progesterone, and HER2 receptors, and two doxorubicin-resistant cell lines, MCF-7/ADR and MDB-MB-231/ADR.

View Article and Find Full Text PDF
Article Synopsis
  • * Our experiments included cytotoxicity assays on various cancer cell lines, revealing that perifosine selectively sensitized P-gp-overexpressing MCF-7/ADR and KBV20C cells, unlike other tested Akt inhibitors which were more effective on non-resistant cells.
  • * The mechanism behind perifosine's action involved increased apoptosis and cell cycle arrest in resistant MCF-7/ADR cells, yet it did not significantly inhibit P-gp activity, indicating that the drug
View Article and Find Full Text PDF

Chemotherapy treatment outcomes are severely restricted by multidrug resistance (MDR), in which tumors develop a multiple cross-resistance toward drug involving the pump and nonpump resistance mechanisms, resulting in drug efflux and defending against drug toxicity. Herein, we constructed a pH and near infrared (NIR) light responsive nanomedicine DOX@FG based on gold nanorods (GNRs) that demonstrated the potential to improve chemotherapy outcomes by overcoming MDR. DOX@FG was constructed by conjugating folic acid (FA) and doxorubicin (DOX) derivatives onto GNRs, where the DOX derivatives possessed an acid-labile hydrazone bond.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!