Histones are the major proteinaceous components of chromatin in eukaryotic cells and an important part of the epigenome. The broad-spectrum herbicide atrazine (2-chloro-4-[ethylamino]-6-[isopropylamino]-1, 3, 5-triazine) and its metabolites are known to form protein adducts, but the formation of atrazine-histone adducts has not been studied. In this study, a bottom-up proteomics analysis method was optimized and applied to identify histone adduction by atrazine in vitro. Whole histones of calf thymus or human histone H3.3 were incubated with atrazine. After solvent-based protein precipitation, the protein was digested by trypsin/Glu-C and the resulting peptides were analyzed by high-resolution mass spectrometry using an ultra-high-performance liquid chromatograph interfaced with a quadrupole Exactive-Orbitrap mass spectrometer. The resulting tryptic/Glu-C peptide of DTNLCAIHAK from calf thymus histone H3.1 or human histone H3.3 was identified with an accurate mass shift of +179.117 Da in atrazine incubated samples. It is deduced that a chemical group with an elemental composition of CHN (179.1171 Da) from atrazine adducted with calf thymus histone H3.1 or human histone H3.3. It was confirmed by MS/MS analysis that the adduction position was at its cysteine 110 residue. Time- and concentration-dependent assays also confirmed the non-enzymatic covalent modification of histone H3.3 by atrazine in vitro. Thus, the potential exists that atrazine adduction may lead to the alteration of histones that subsequently disturbs their normal function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974708 | PMC |
http://dx.doi.org/10.1007/s00216-023-04545-6 | DOI Listing |
Bioorg Med Chem Lett
September 2019
School of Medical Sciences (Pharmacology), The University of Sydney, New South Wales 2006, Australia. Electronic address:
Hydroxamic acid compounds 1-10 containing a N-hydroxycinnamamide scaffold and a 4-(benzylamino)methyl cap group that was either unsubstituted (1) or substituted with one (2-4) or two (5-10) methoxy groups in variable positions were prepared as inhibitors of Zn(II)-containing histone deacetylases (HDACs). The 3,4- (9) and 3,5- (10) bis-methoxy-substituted compounds were the least potent against HeLa nuclear extract, HDAC1 and HDAC2. Molecular modelling showed methoxy groups in the 3-, 4- and 5-position, but not the 2-position, had unfavourable steric interactions with the G32-H33-P34 triad on a loop at the surface of the HDAC2 active site cavity.
View Article and Find Full Text PDFMol Cell Biochem
November 1984
The pattern of subtypes of the nucleosomal histones and of histone H1 was investigated in human cells from adult and fetal lung and liver, from carcinoma tissues and from carcinoma-derived cell lines, with the object of comparing these patterns, and their relationship to cell growth rate, with those in cells of other species. The subtype pattern of the nucleosomal histones H2A and H3 shows a correlation with replication rate. In adult tissues, subtype H3-3 predominates over H3-2 and H3-1, and the subtype H2A-1 and H2A-2 are approximately equally abundant.
View Article and Find Full Text PDFDuring vegetative growth, micronuclei of the ciliated protozoan Tetrahymena thermophila contain two electrophoretically distinct forms of H3, H3S and H3F [4, 5]. Of these two forms, H3F is unique to micronuclear chromatin and is derived from H3S by a physiologically regulated proteolytic processing event [5]. While the function of this processing event is not clear, several lines of evidence [2, 5] suggest that it may be related to chromatin condensation during mitosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!