Nowadays, foodborne illness is considered one of the most outgrowing diseases in the world, and studies show that its rate increases sharply each year. Foodborne illness is considered a public health problem which is caused by numerous factors, such as food intoxications, allergies, intolerances, etc. Mycotoxin is one of the food contaminants which is caused by various species of molds (or fungi), which, in turn, causes intoxications that can be chronic or acute. Thus, even low concentrations of Mycotoxin have a severely harmful impact on human health. It is, therefore, necessary to develop an assessment tool for evaluating their impact on the immune response. Recently, researchers have approved a new method of investigation using human dendritic cells, yet the analysis of the geometric properties of these cells is still visual. Moreover, this type of analysis is subjective, time-consuming, and difficult to perform manually. In this paper, we address the automation of this evaluation using image-processing techniques. Automatic classification approaches of microscopic dendritic cell images are developed to provide a fast and objective evaluation. The first proposed classifier is based on support vector machines (SVM) and Fisher's linear discriminant analysis (FLD) method. The FLD-SVM classifier does not provide satisfactory results due to the significant confusion between the inhibited cells on one hand, and the other two cell types (mature and immature) on the other hand. Then, another strategy was suggested to enhance dendritic cell recognition results that are emitted from microscopic images. This strategy is mainly based on fuzzy logic which allows us to consider the uncertainties and inaccuracies of the given data. These proposed methods are tested on a real dataset consisting of 421 images of microscopic dendritic cells, where the fuzzy classification scheme efficiently improved the classification results by successfully classifying 96.77% of the dendritic cells. The fuzzy classification-based tools provide cell maturity and inhibition rates which help biologists evaluate severe health impacts caused by food contaminants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866805PMC
http://dx.doi.org/10.3390/jimaging9010013DOI Listing

Publication Analysis

Top Keywords

dendritic cells
16
human dendritic
8
foodborne illness
8
illness considered
8
food contaminants
8
microscopic dendritic
8
dendritic cell
8
cells fuzzy
8
dendritic
6
cells
6

Similar Publications

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

Copper Chelate Targeting Externalized Phosphatidylserine Inhibits PD-L1 Expression and Enhances Cancer Immunotherapy.

J Am Chem Soc

January 2025

Department of Pharmacy, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparation and Clinical Pharmacy, Hefei, Anhui 230026, China.

Inhibitors of the PD-1/PD-L1 immune checkpoint have revolutionized cancer treatment. However, the clinical response remains limited, with only 20% of patients benefiting from treatment and approximately 60% of PD-L1-positive patients exhibiting resistance. One key factor contributing to resistance is the externalization of phosphatidylserine (PS) on the surface of cancer cells, which suppresses immune responses and promotes PD-L1 expression, further hindering the efficacy of PD-L1 blockade therapies.

View Article and Find Full Text PDF

Glioblastoma (GBM), the most malignant brain tumor with high prevalence, remains highly resistant to the existing immunotherapies due to the significant immunosuppression within tumor microenvironment (TME), predominantly manipulated by M2-phenotypic tumor-associated macrophages (M2-TAMs). Here in this work, an M2-TAMs targeted nano-reprogrammers, MG5-S-IMDQ, is established by decorating the mannose molecule as the targeting moiety as well as the toll-like receptor (TLR) 7/8 agonist, imidazoquinoline (IMDQ) on the dendrimeric nanoscaffold. MG5-S-IMDQ demonstrated an excellent capacity of penetrating the blood-brain barrier (BBB) as well as selectively targeting M2-TAMs in the GBM microenvironment, leading to a phenotype transformation and function restoration of TAMs shown as heightened phagocytic activity toward tumor cells, enhanced cytotoxic effects, and improved tumor antigen cross-presentation capability.

View Article and Find Full Text PDF

Background/objectives: GCL1815 is a lactic acid bacterium thought to activate dendritic cells. This randomized, placebo-controlled, double-blind study aimed to evaluate the effects of GCL1815 on human dendritic cells and the onset of the common cold.

Methods: Two hundred participants were divided into two groups and took capsules containing either six billion GCL1815 cells or placebo for 8 weeks.

View Article and Find Full Text PDF

Regulation of Age-Related Lipid Metabolism in Ovarian Cancer.

Int J Mol Sci

January 2025

Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, 701 West Main Street, Suite 510, Duke, P.O. Box 90534, Durham, NC 27701, USA.

The mortality rate of ovarian cancer (OC) remains the highest among female gynecological malignancies. Advanced age is the highest risk factor for OC development and progression, yet little is known about the role of the aged tumor microenvironment (TME). We conducted RNA sequencing and lipidomic analysis of young and aged gonadal adipose tissue from rat xenografts before and after OC formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!