Carbon dots (CDs) are a new category of crystalline, quasi-spherical fluorescence, "zero-dimensional" carbon nanomaterials with a spatial size between 1 nm to 10 nm and have gained widespread attention in recent years. Green CDs are carbon dots synthesised from renewable biomass such as agro-waste, plants or medicinal plants and other organic biomaterials. Plant-mediated synthesis of CDs is a green chemistry approach that connects nanotechnology with the green synthesis of CDs. Notably, CDs made with green technology are economical and far superior to those manufactured with physicochemical methods due to their exclusive benefits, such as being affordable, having high stability, having a simple protocol, and being safer and eco-benign. Green CDs can be synthesized by using ultrasonic strategy, chemical oxidation, carbonization, solvothermal and hydrothermal processes, and microwave irradiation using various plant-based organic resources. CDs made by green technology have diverse applications in biomedical fields such as bioimaging, biosensing and nanomedicine, which are ascribed to their unique properties, including excellent luminescence effect, strong stability and good biocompatibility. This review mainly focuses on green CDs synthesis, characterization techniques, beneficial properties of plant resource-based green CDs and their biomedical applications. This review article also looks at the research gaps and future research directions for the continuous deepening of the exploration of green CDs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863160 | PMC |
http://dx.doi.org/10.3390/jfb14010027 | DOI Listing |
Small
January 2025
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Developing single-particle nanocomposite with aqueous-phase orthogonal multicolor phosphorescence or multimodal luminescence holds great significance for optical coding, anti-counterfeiting encryption, bioimaging, and biosensing. However, it faces challenges such as a limited range of emission wavelengths and difficulties in controlling the synthesis process. In this work, a conjugate structure manipulation integrated luminophor confinement strategy is proposed to prepare carbon dots@upconversion nanoparticles (CDs@UCNPs) featuring aqueous-phase orthogonal multicolor room-temperature phosphorescence-upconversion luminescence (RTP-UCL) through wet-chemical synthetic methods.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
Improving catalytic performance by controlling the microstructure of materials has become a hot topic in the field of photocatalysis, such as the surface defect site, multistage layered morphology, and exposed crystal surface. Due to the differences in the metal atomic radius (Mn and Cd) and solubility product constant (MnS and CdS), Mn defect easily occurred in the S/MnCdS (S/0.4MCS) composite.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
USDA-ARS Plant Science Research Laboratory, 1301N, Western Rd, Stillwater, OK 74075, USA.
Greenbug, , is one of the important cereal aphid pests of sorghum in the United States and other parts of the world. variety PI 607900 carries the resistance () gene that underlies plant resistance to greenbug biotype I (GBI). Now, the has been determined as the major gene conferring greenbug resistance based on the strong association of its presence with the resistance phenotype in sorghum.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China. Electronic address:
As a novel fluorescent carbon nanomaterial, carbon dots are restricted by their poor fluorescence in the solid state, although they exhibit favorable photoluminescence in solution. N-doped carbon dots (N-CDs) and solid-state fluorescence films were prepared using green and renewable cellulose-derived materials, respectively. The hydrogen bonding network of carboxymethyl cellulose (CMC) inhibits the self-aggregation behavior of N-CDs, which leads to solid-state fluorescence.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Anisotropic carrier transport and deep-level defect of antimony selenosulfide (Sb(S,Se)) absorber are two vital auses restraining the photovoltaic performance of this emerging thin-film solar cell. Herein, chelate engineering is proposed to prepare high-quality Sb(S,Se) film based on hydrothermal deposition approach, which realizes desirable carrier transport and passivated defects by using tetrahedral PO ion in dibasic sodium phosphate (NaHPO, DSP). The PO Lewis structure, on one hand in the form of [(SbO)(PO)] chelate, can adsorb on the polar planes of cadmium sulfide (CdS) layer, promoting the heterogeneous nucleation, and on the other hand, the tetrahedral PO inhibits horizontal growth of (SbS(e)) ribbons due to size effects, thus achieving desirable [hk1] orientation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!