There has been profound growth in the use of 3D printed materials in dentistry in general, including orthodontics. The opportunity to impart antimicrobial properties to 3D printed parts from existing resins requires the capability of forming a stable colloid incorporating antimicrobial fillers. The objective of this research was to characterize a colloid consisting of a 3D printable resin mixed with Ag-ion releasing zeolites and fumed silica to create 3D printed parts with antiviral properties. The final composite was tested for antiviral properties against SARS-CoV-2 and HIV-1. Antiviral activity was measured in terms of the half-life of SARS-CoV-2 and HIV-1 on the composite surface. The inclusion of the zeolite did not interfere with the kinetics measured on the surface of the ATR crystal. While the depth of cure, measured following ISO4049 guidelines, was reduced from 3.8 mm to 1.4 mm in 5 s, this greatly exceeded the resolution required for 3D printing. The colloid was stable for at least 6 months and the rheological behavior was dependent upon the fumed silica loading. The inclusion of zeolites and fumed silica significantly increased the flexural strength of the composite as measured by a 3 point bend test. The composite released approximately 2500 μg/L of silver ion per gram of composite as determined by potentiometry. There was a significant reduction of the average half-life of SARS-CoV-2 (1.9 fold) and HIV-1 (2.7 fold) on the surface of the composite. The inclusion of Ag-ion releasing zeolites into 3D-printable resin can result in stable colloids that generate composites with improved mechanical properties and antiviral properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861246PMC
http://dx.doi.org/10.3390/jfb14010007DOI Listing

Publication Analysis

Top Keywords

ag-ion releasing
12
fumed silica
12
antiviral properties
12
printed parts
8
releasing zeolites
8
zeolites fumed
8
sars-cov-2 hiv-1
8
half-life sars-cov-2
8
composite
6
properties
5

Similar Publications

Preparation of a CNF porous membrane and synthesis of silver nanoparticles (AgNPs).

RSC Adv

January 2025

The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan +81-45-566-1580 +81-45-566-1839.

We prepared a cellulose nanofiber (CNF)-based porous membrane with three dimensional cellular structures. CNF was concentrated a surfactant-induced assembly by mixing CNF with a cationic surfactant, domiphen bromide (DB). Furthermore, they were accumulated by centrifugation to obtain a CNF-DB sol.

View Article and Find Full Text PDF

Cytotoxic Effects of ZnO and Ag Nanoparticles Synthesized in Microalgae Extracts on PC12 Cells.

Mar Drugs

December 2024

Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy.

The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/AgO/ZnO nanocomposites (NCs), using polar and apolar extracts of , offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/AgO NPs synthesized with apolar (Ag/AgO NPs A) and polar (Ag/AgO NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag ion release and the disruption of mitochondrial function.

View Article and Find Full Text PDF

Aims And Background: Dentin hypersensitivity (DH) is characterized by sharp shooting pain due to exposed dentin, and the most common method for treating this pain is the occlusion of the dentinal tubules with the help of desensitizing agents. E-silver diamine fluoride (e-SDF) (Kids-e-Dental, Mumbai, India) is a commercially available 38% SDF solution in the Indian market. Despite the fact that its application for caries prevention has been proven, the fluoride (Fl) and silver (Ag) ion concentrations of e-SDF for use in treating DH have yet to be standardized.

View Article and Find Full Text PDF

Today, hydrogel dressings that can protect injury sites and effectively promote healing have become highly desirable in wound management. Therefore, multifunctional silver-poli(-isopropylacrylamide/itaconic acid) (Ag-P(NiPAAm/IA)) hydrogel nanocomposites were developed for potential application as topical treatment dressings. The radiolytic method, used for the crosslinking of the polymer matrix as well as for the in situ incorporation of silver nanoparticles (AgNPs) into the polymer matrix, enables the preparation of hydrogel nanocomposites without introducing harmful and toxic agents.

View Article and Find Full Text PDF
Article Synopsis
  • Fixed orthodontic appliances can harbor harmful bacteria, leading to dental issues such as white spot lesions and periodontal disease.
  • The study involved coating nickel-titanium (NiTi) wires with antimicrobial silver nanoparticles (AgNPs) and nanocomposites to enhance their antibacterial properties.
  • Results showed that these coated wires significantly inhibited bacterial growth and biofilm formation, especially with chitosan-silver nanocomposite (CS-Ag), while also reducing surface roughness and minimizing metal ion release.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!