Behaviour of (Hymenoptera: Vespidae) under Controlled Environmental Conditions.

Insects

Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, 48940 Leioa, Spain.

Published: January 2023

From its introduction in Europe, has become an invasive species, since it is a predator of native fruits and insects, most of the latter being honeybees. Despite the knowledge on the life cycle of this hornet, Asian hornet behaviour is not well understood, since in vivo studies on this species are quite difficult to perform. In this work, an observational study of the behaviour of this invasive species in captivity has been carried out. Two secondary and one embryo nests were caught and kept under controlled environmental conditions, up to 13 weeks for the secondary nest and 6 weeks for the embryo nest. Captivity adaptation, defence against perturbations, evolution of the colony and overwintering were the different behaviours studied. The study has shown the importance of avoiding disturbances to the nest from the beginning of the experiments, since they tend to destroy the colony. The aggressive behaviour observed in the embryo nest was lower than in the secondary nests. Results of this research will allow obtaining additional information on this species, which is crucial to develop effective control methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864241PMC
http://dx.doi.org/10.3390/insects14010059DOI Listing

Publication Analysis

Top Keywords

controlled environmental
8
environmental conditions
8
invasive species
8
embryo nest
8
behaviour
4
behaviour hymenoptera
4
hymenoptera vespidae
4
vespidae controlled
4
conditions introduction
4
introduction europe
4

Similar Publications

Effect of Ph on the Physicochemical Properties of a Cassava Peel Starch Biopolymer.

Cell Physiol Biochem

January 2025

Carrera de Agroindustria, Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM-MFL, Calceta. 130250, Ecuador.

Background/aims: This study investigates how pH levels affect the characteristics of biopolymer films manufactured from cassava peel starch. Cassava peel starch's abundance and biodegradability make it a promising candidate for sustainable packaging. The study seeks to improve film qualities such as thickness, density, moisture content, solubility, and optical properties by altering pH levels.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.

Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).

View Article and Find Full Text PDF

Despite recent substantial advances in water treatment, the ability to selectively degrade trace micropollutants in real waters with complex matrix components remains a grand challenge. Here we report rational crafting of graphene oxide (GO)-wrapped defective TiO2 composite catalysts that creates nanoscopic confinement over the TiO2 surface within GO, thereby enabling the selective degradation of micropollutants through effectively excluding natural organic matter (NOM) and anions from the nanoconfined catalytic sites. In contrast to unconfined counterparts, the nanoconfined composite catalysts retain high degradation efficiency when exposed to various concentrations of NOM and anions, even in real water samples.

View Article and Find Full Text PDF

Upcycling polynorbornene derivatives into chemically recyclable multiblock linear and thermoset plastics.

Angew Chem Int Ed Engl

January 2025

Colorado State University, Chemistry and Biochemistry, 301 W. Pitkin Street, 215 UCB, 80523, United States, 80523, Fort Collins, UNITED STATES OF AMERICA.

Synthetic polymers have found widespread use with functional lifetimes from seconds to decades. However, the lack of end-of-life treatment for these plastics is causing a significant environmental and human health crisis due to their persistence and bioaccumulation. Upcycling post-consumer plastic waste to products with inherent recyclability is an attractive strategy to tackle this problem, as it can broaden the range of accessible materials and uncover unprecedented features while dealing with current plastic waste.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!