Diagnosis and treatment planning forms the crux of orthodontics, which orthodontists gain with years of expertise. Machine Learning (ML), having the ability to learn by pattern recognition, can gain this expertise in a very short duration, ensuring reduced error, inter-intra clinician variability and good accuracy. Thus, the aim of this study was to construct an ML predictive model to predict a broader outline of the orthodontic diagnosis and treatment plan. The sample consisted of 700 case records of orthodontically treated patients in the past ten years. The data were split into a training and a test set. There were 33 input variables and 11 output variables. Four ML predictive model layers with seven algorithms were created. The test set was used to check the efficacy of the ML-predicted treatment plan and compared with that of the decision made by the expert orthodontists. The model showed an overall average accuracy of 84%, with the Decision Tree, Random Forest and XGB classifier algorithms showing the highest accuracy ranging from 87-93%. Yet in their infancy stages, Machine Learning models could become a valuable Clinical Decision Support System in orthodontic diagnosis and treatment planning in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858447PMC
http://dx.doi.org/10.3390/dj11010001DOI Listing

Publication Analysis

Top Keywords

machine learning
12
predictive model
12
treatment planning
12
diagnosis treatment
12
clinical decision
8
decision support
8
support system
8
system orthodontic
8
orthodontic diagnosis
8
treatment plan
8

Similar Publications

Objective: This study evaluated ResNet-50 and U-Net models for detecting and segmenting vertical misfit in dental implant crowns using periapical radiographic images.

Methods: Periapical radiographs of dental implant crowns were classified by two experts based on the presence of vertical misfit (reference group). The misfit area was manually annotated in images exhibiting vertical misfit.

View Article and Find Full Text PDF

Background: Retail involves directly delivering goods and services to end consumers. Natural disasters and epidemics/pandemics have significant potential to disrupt supply chains, leading to shortages, forecasting errors, price increases, and substantial financial strains on retailers. The COVID-19 pandemic highlighted the need for retail sectors to prepare for crisis impacts on sales forecasts by regularly assessing and adjusting sales volumes, consumer behavior, and forecasting models to adapt to changing conditions.

View Article and Find Full Text PDF

Terrestrial vegetation is a key component of the Earth system, regulating the exchange of carbon, water, and energy between land and atmosphere. Vegetation affects soil moisture dynamics by absorbing and transpiring soil water, thus modulating land-atmosphere interactions. Moreover, changes in vegetation structure (e.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) frequently metastasizes to the brain, significantly worsened prognoses. This study aimed to develop an interpretable model for predicting survival in NSCLC patients with brain metastases (BM) integrating radiomic features and RNA sequencing data. 292 samples are collected and analyzed utilizing T1/T2 MRIs.

View Article and Find Full Text PDF

In the field of agriculture, particularly within the context of machine learning applications, quality datasets are essential for advancing research and development. To address the challenges of identifying different mango leaf types and recognizing the diverse and unique characteristics of mango varieties in Bangladesh, a comprehensive and publicly accessible dataset titled "BDMANGO" has been created. This dataset includes images essential for research, featuring six mango varieties: Amrapali, Banana, Chaunsa, Fazli, Haribhanga, and Himsagar, which were collected from different locations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!