Extreme weather events pose an immediate threat to biodiversity, but existing conservation strategies have limitations. Advances in meteorological forecasting and innovation in the humanitarian sector provide a possible solution-forecast-based action (FbA). The growth of ecological forecasting demonstrates the huge potential to anticipate conservation outcomes, but a lack of operational examples suggests a new approach is needed to translate forecasts into action. FbA provides such a framework, formalizing the use of meteorological forecasts to anticipate and mitigate the impacts of extreme weather. Based on experience from the humanitarian sector, I suggest how FbA could work in conservation, demonstrating key concepts using the theoretical example of heatwave impacts on sea turtle embryo mortality, and address likely challenges in realizing FbA for conservation, including establishing a financing mechanism, allocating funds to actions, and decision-making under uncertainty. FbA will demand changes in conservation research, practice, and governance. Researchers must increase efforts to understand the impacts of extreme weather at more immediate and actionable timescales and should coproduce forecasts of such impacts with practitioners. International conservation funders should establish systems to fund anticipatory actions based on uncertain forecasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cobi.14054 | DOI Listing |
Under the background of climate change, the escalating air pollution and extreme weather events have been identified as risk factors for chronic respiratory diseases (CRD), causing serious public health burden worldwide. This review aims to summarize the effects of changed atmospheric environment caused by climate change on CRD. Results indicated an increased risk of CRD (mainly COPD, asthma) associated with environmental factors, such as air pollutants, adverse meteorological conditions, extreme temperatures, sandstorms, wildfire, and atmospheric allergens.
View Article and Find Full Text PDFPublic Health
January 2025
Extreme Events and Health Protection Team, Centre for Climate Change and Health Security, UK Health Security Agency, 10 South Colonnade, Canary Wharf, London, UK. Electronic address:
Objective: To systematically review evidence from high income countries on health risks from cold weather exposure among people experiencing homelessness (PEH) and assess evidence on risk-reduction interventions and their effectiveness.
Study Design: Narrative systematic review.
Methods: Keyword-structured searches were performed in CINAHL, Emcare, Medline, SocINDEX, Scopus, OpenGrey, Social Policy and Practice and Web of Science, and supplemented by grey literature searches in a selection of other databases, from 1973 to 2024.
Traffic Inj Prev
January 2025
School of Civil and Hydraulic Engineering, NingXia University, YinChuan, China.
Objective: This study aims to address the issue of driving safety on highways in the desert region of Northwest China during extreme weather conditions such as sandstorms, with the goal of reducing driver risk. It explores driver behavior under extreme conditions of sandstorms and sand accumulation, proposing safety speed recommendations and warning models for different environments to calculate the optimal warning distance in windy and sandy conditions.
Methods: Natural driving simulation experiments were conducted in windy and sandy environments, collecting driving behavior data from 45 drivers under varying visibility and road conditions with or without sand accumulation.
Sci Rep
January 2025
College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
Climate change is shifting optimal habitats for medicinal plants, potentially compromising the efficacy and therapeutic value of herbal remedies. Global warming and increased extreme weather events threaten the sustainability and pharmaceutical integrity of Angelica sinensis (Oliv.) Diels (A.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Ionic conductive hydrogels (ICHs) are emerging as key materials for advanced human-machine interactions and health monitoring systems due to their unique combination of flexibility, biocompatibility, and electrical conductivity. However, a major challenge remains in developing ICHs that simultaneously exhibit high ionic conductivity, self-healing, and strong adhesion, particularly under extreme low-temperature conditions. In this study, a novel ICH composed of sulfobetaine methacrylate, methacrylic acid, TEMPO-oxidized cellulose nanofibers, sodium alginate, and lithium chloride is presented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!