Overcoming Environmental Stress Cracking of FDM 3D Printed Formwork for Counter-Pressure Casting of Concrete.

3D Print Addit Manuf

Physical Chemistry of Building Materials, Institute for Building Materials, D-BAUG, ETH Zürich, Zürich, Switzerland.

Published: April 2022

The rapid growth of interest toward concrete digital fabrication reflects the current aspiration for better, smarter, faster, and greener construction means. Among a broad variety of techniques developed by our community, digital casting presents clear advantages regarding dimensional precision, geometrical freedom, and surface finish of the produced elements. In contrast to robotic slip forming, the usage of digitally fabricated formworks requires simpler equipment. It, however, calls for easily shaped formworks, typically best three-dimensional (3D) printed, for example, by fused deposition modeling. While such molds can be easily fabricated with a wide range of commercially off-the-shelf available 3D printers, a shortcoming is the susceptibility of many polymers to environmental stress cracking, particularly when in contact with high pH solutions typical for cementitious materials. This article confirms the problem posed by this type of environmental stress cracking and presents two very effective means of circumventing it: A silicone coating and cyclic olefin copolymer. Apart from this, in the specific case of counterpressure casting (CPC), hydrostatic pressure must be resisted by a powder bed surrounding the formwork. The efficiency of such beds is examined and a particular mixture of sand and lead is shown to be particularly effective, provided its density is regulated to balance stress principles derived from soil mechanics. Presented applications include the successful CPC of thin prismatic formworks with a concrete height up to 3 m as representative of typical interfloor load-bearing elements. The combination of counterpressure and stress control is shown to be essential for such achievement, highlighting the potential of this approach as a viable member of the concrete digital casting family.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9831541PMC
http://dx.doi.org/10.1089/3dp.2021.0006DOI Listing

Publication Analysis

Top Keywords

environmental stress
12
stress cracking
12
concrete digital
8
digital casting
8
stress
5
overcoming environmental
4
cracking fdm
4
fdm printed
4
printed formwork
4
formwork counter-pressure
4

Similar Publications

An exploratory survey assessing the determinants of heat stress and heat strain in the Canadian mining industry from the worker's perspective.

J Occup Environ Hyg

January 2025

Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.

With mines extending deeper and rising surface temperatures, workers are exposed to hotter environments. This study aimed to characterize heat stress and strain in the Canadian mining industry and evaluate the utility of the Heat Strain Score Index (HSSI), combined with additional self-reported adverse health outcomes. An exploratory web-based survey was conducted among workers ( = 119) in the Canadian mining industry.

View Article and Find Full Text PDF

: Brain tissue immersed in cerebrospinal fluid often exhibits complex mechanical behaviour, especially the nonlinear stress- strain and rate-dependent responses. Despite extensive research into its material properties, the impact of solution environments on the mechanical behaviour of brain tissue remains limited. This knowledge gap affects the biofidelity of head modelling.

View Article and Find Full Text PDF

Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.

View Article and Find Full Text PDF

In Situ-Forming, Adhesive, and Antioxidant Chitosan Hydrogels for Accelerated Wound Healing.

Biomacromolecules

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.

Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.

View Article and Find Full Text PDF

Changeover method for biosafety cabinets using ozone gas.

PLoS One

January 2025

Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan.

This study evaluated the effectiveness of a biosafety cabinet equipped with an ozone generator, particularly during the transition periods between the production of cell products. As living cell products cannot undergo sterilization, maintaining an aseptic manufacturing environment is paramount. Raw materials, often derived from human tissues, are frequently contaminated with various resident bacteria, necessitating environmental resets after each process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!