Background: The study was designed to investigate the mechanism of Hongjingtian injection (HJT) in treating tubulointerstitial fibrosis (TIF) in chronic kidney diseases (CKD) based on network pharmacology and experimental verification.

Methods: First, active ingredients of HJT obtained from literature were screened using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and putative targets of active ingredients were predicted using the Chemmapper, SEA and Swiss Target Prediction database. Subsequently, the "compound-target" network for HJT was established. In addition, TIF disease targets were obtained from the GEO gene chips (accession number GSE20247). The intersecting targets of HJT and TIF obtained through Venny 2.1.0. The key targets and signaling pathways were determined by protein-protein interaction (PPI) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, quantitative polymerase chain reaction (qPCR) and Western blot (WB) were used to validate the predicted five key genes targets (). And immunofluorescence, wound healing assay and transwell assay were used to verify the anti-fibrosis effect of HJT on TGFβ1-induced HK-2 cells.

Results: The network pharmacology analysis results showed that there are 36 active compounds and 1,044 putative target genes in HJT. HJT may exert its inhibitory effects against TIF by acting on 79 key targets. Besides, KEGG analysis indicated that the anti-TIF effect of HJT was mediated by multiple pathways, such as the metabolic pathway, pathways in cancer and gap junction. Among them, and are enriched in the metabolic pathway. induced cell model experiments, the immunofluorescence experience showed that HJT could restore EMT of HK-2 cells. In addition, the qPCR and WB results showed that HJT significantly restored the expression of the in HK-2 cells induced by TGF-β1.

Conclusions: This study comprehensively illuminated the active compounds, potential targets, and molecular mechanism of HJT against TIF. HJT treatment of TIF may reverse EMT caused by TGF-β1 by targeting .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843345PMC
http://dx.doi.org/10.21037/atm-22-5035DOI Listing

Publication Analysis

Top Keywords

hk-2 cells
12
network pharmacology
12
hjt
12
targets
8
hongjingtian injection
8
tgfβ1-induced hk-2
8
pharmacology experimental
8
active ingredients
8
hjt tif
8
key targets
8

Similar Publications

Aim: To study the effect and elucidate the underlying mechanisms of VDAC1-ΔC on autophagy in renal tubular epithelial cells injured by hypoxia/reoxygenation.

Methods: C57/BL6 mice were randomly divided into groups: sham operation group, IRI 1d group and IRI 2d group. The inner canthal blood of mice was collected to detect the levels of serum creatinine and urea nitrogen and kidney tissues were sampled, and sections were stained with Periodic acid-Schiff for morphological evaluation.

View Article and Find Full Text PDF

Urinary stones (urolithiasis) have been categorized as kidney stones (renal calculus), ureteric stones (ureteral calculus and ureterolith), bladder stones (bladder calculus), and urethral stones (urethral calculus); however, the mechanisms underlying their promotion and related injuries in glomerular and tubular cells remain unclear. Although lifestyle-related diseases (LSRDs) such as hyperglycemia, type 2 diabetic mellitus, non-alcoholic fatty liver disease/non-alcoholic steatohepatitis, and cardiovascular disease are risk factors for urolithiasis, the underlying mechanisms remain unclear. Recently, heat shock protein 90 (HSP90) on the membrane of HK-2 human proximal tubular epithelium cells has been associated with the adhesion of urinary stones and cytotoxicity.

View Article and Find Full Text PDF

Objectives: To explore the effects of puerarin on renal ischemia/reperfusion injury and the possible mechanism.

Materials And Methods: The experimental mice were injected with puerarin (50 or 100 mg/kg) per day or equal sterile saline by intraperitoneal injection for one week, and a renal I/R injury model was constructed. HK-2 cells were incubated with puerarin (1 uM and 10 uM) before the H/R model.

View Article and Find Full Text PDF

Nicotinamide n-methyltransferase inhibitor synergizes with sodium-glucose cotransporter 2 inhibitor to protect renal tubular epithelium in experimental models of type 2 diabetes mellitus.

J Diabetes Complications

January 2025

Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China. Electronic address:

Aims: We aim to explore the potential of nicotinamide n-methyltransferase (NNMT) as a sensitive marker of renal tubular injury and the possibility of an NNMT inhibitor to combine with sodium-glucose cotransporter 2 (SGLT2) inhibitor to protect proximal tubular epithelium in vivo and in vitro model of Type 2 diabetes mellitus (T2DM), respectively.

Methods: In vivo, immunohistochemical staining, Masson's trichrome staining and Sirius red staining were used to observe the changes of NNMT expression, renal tubular injury and interstitial fibrosis in renal tissue from the db/db mice. Bioinformatic analysis was also conducted to broaden the range of data validation.

View Article and Find Full Text PDF

Background And Objective: Mitochondria are crucial to the function of renal tubular cells, and their dynamic perturbation in many aspects is an important mechanism of diabetic kidney disease (DKD). Single-nucleus RNA sequencing (snRNA-seq) technology is a high-throughput sequencing analysis technique for RNA at the level of a single cell nucleus. Here, our DKD mouse kidney single-cell RNA sequencing conveys a more comprehensive mitochondrial profile, which helps us further understand the therapeutic response of this unique organelle family to drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!