Background: Ginsenoside Rg1, a major bioactive ingredient of , has been shown to reduce gut inflammation and ameliorate experimental colitis in mice. However, it is not yet known whether it affects the intestinal barrier injury of colitis.

Methods: This study explored the effect of ginsenoside Rg1 on intestinal barrier injury in dextran sulfate sodium (DSS)-induced colitis mice through an ultrastructure observation of the colonic mucosa and analysis of the expression of colonic cytoplasmatic zonula occludens-1 (ZO-1) protein.

Results: Treatment with ginsenoside Rg1, especially high-dose use, significantly ameliorated colonic histopathologic features and the severity of the colitis and reduced colonic tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) levels and increase IL-4 levels in a mouse model of DSS-induced colitis. Its observed efficacy was comparable to that of 5-Aminosalicylic acid (5-ASA), a first-line therapeutic agent for ulcerative colitis. Notably, ginsenoside Rg1 administration was shown to up-regulate the expression of colonic ZO-1 protein, and it repaired the intestinal barrier structure in DSS-induced colitis mice.

Conclusions: Taken together, our findings demonstrated that ginsenoside Rg1 treatment can significantly ameliorate the severity of DSS-induced colitis in mice, which involves intestinal barrier structure remodeling through lowering the levels of the colonic pro-inflammatory cytokines TNF-α and IFN-γ and increasing the anti-inflammatory cytokine IL-4. These results suggest the potential therapeutic use of ginsenoside Rg1 as a promising approach for the treatment of inflammatory bowel disease (IBD).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843362PMC
http://dx.doi.org/10.21037/atm-22-5467DOI Listing

Publication Analysis

Top Keywords

ginsenoside rg1
28
intestinal barrier
20
dss-induced colitis
16
colitis mice
12
dextran sulfate
8
colitis
8
barrier injury
8
expression colonic
8
barrier structure
8
rg1
7

Similar Publications

Rg1 Improves Alzheimer's disease by Regulating Mitochondrial Dynamics Mediated by the AMPK/Drp1 Signaling Pathway.

J Ethnopharmacol

December 2024

Hubei University of Chinese Medicine, Basic Medical College, Wuhan, Hubei, 430070, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Wuhan, Hubei, 430070, China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430070, China. Electronic address:

Ethnopharmacological Relevance: Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by a complex pathogenesis that includes Aβ deposition, abnormal phosphorylation of tau protein, chronic neuroinflammation, and mitochondrial dysfunction. In traditional medicine, ginseng is revered as the 'king of herbs'. Ginseng has the effects of greatly tonifying vital energy, strengthening the spleen and benefiting the lungs, generating fluids and nourishing the blood, and calming the mind while enhancing intelligence.

View Article and Find Full Text PDF

This study investigates the protective effect of ginsenoside Rg1 against manganese (Mn)-induced hepatotoxicity, highlighting its role as a PPAR-γ activator and its impact on TLR4/MyD88/MAPK pathway. Manganese induces liver damage through mechanisms involving oxidative stress and inflammation. Rg1, a principal bioactive compound of ginseng, significantly alleviates Mn-induced liver injury.

View Article and Find Full Text PDF

Background: Ulcerative colitis (UC) is a prevalent inflammatory bowel disease primarily impacting the mucosa of the colon. It is characterized by recurring and incurable symptoms and causes immense suffering and significant economic burden due to limited treatment options. Typical symptoms of UC include diarrhea, alterations in bowel patterns, bleeding from the rectum, rectal pain or urgency, anemia, and tiredness.

View Article and Find Full Text PDF

Ginsenoside Rg1 (Rg1) has been shown to treat a variety of human diseases, including Alzheimer's disease (AD). However, its mechanism in AD needs further investigation. Microglial cells (BV2) were treated with Aβ to induce AD cell models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!