It has been challenging to develop deep blue organic molecular fluorescent emitters with CIE y (y ≤ 0.08) based on triplet-triplet annihilation (TTA). Here, we report facilely available dianthracenylphenylene-based emitters, which have a 3,5-di(4-t-butylphenyl)phenyl moiety at the one end and 4-cyanophenyl or 3-pyridyl at the other end, respectively. Both fluorophores show a high glass transition temperature of over 220 °C with a thermal decomposition temperature of over 430 °C at an initial weight loss of 1%. The preliminary characterizations of the organic light-emitting diodes (OLEDs) that utilized these nondoped emitters provided high EQEs of 4.6%-5.9% with CIE coordinates (0.15, 0.07-0.08). The analysis of the EL transient decay revealed that TTA contributed to the observed performance. The results show that the new emitters are attractive as a potential TTA-based host to afford stable deep blue fluorescent OLEDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2019.04.029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!