Active, stable and low-cost oxygen evolution reaction (OER) catalyst for electrochemical water splitting is key to efficient energy conversion and storage. Here, we report a three-dimensional (3D) nanonetwork as noble-metal-free electrode consisting of nickel cobalt diselenide (NiCoSe) nanobrush arrays on Ni foam (NF) through the initial hydrothermal reaction and subsequent thermal selenization process. Introducing ammonium fluoride as surface controller, different NiCoSe hierarchical architecture can be modulated from nanorods, nanobrush to nanosheets. The unique brush-like NiCoSe possesses high surface area for mass transfer, rough surface with rich active sites, 3D nanostructure preventing the accumulation of O bubbles. Compared to NiCoSe nanorods/NF, NiCoSe nanosheets/NF and commercial RuO, NiCoSe nanobrush/NF exhibits an enhanced OER performance in alkaline media to reach a low overpotential of 274mV at the current density of 10mA/cm, small Tafel slope and a long-term stability. The developed 3D nanonetwork highlights the nanoscale engineering and offers a promising alternative to noble metal catalysts for electrochemical water oxidation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2017.09.012 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, CA 94305.
Microbial mats are stratified communities often dominated by unicellular and filamentous phototrophs within an exopolymer matrix. It is challenging to quantify the dynamic responses of community members in situ as they experience steep gradients and rapid fluctuations of light. To address this, we developed a binary consortium using two representative isolates from hot spring mats: the unicellular oxygenic phototrophic cyanobacterium OS-B' (Syn OS-B') and the filamentous anoxygenic phototroph MS-CIW-1 (Chfl MS-1).
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore.
Electrochemical water splitting is a promising method for generating green hydrogen gas, offering a sustainable approach to addressing global energy challenges. However, the sluggish kinetics of the anodic oxygen evolution reaction (OER) poses a great obstacle to its practical application. Recently, increasing attention has been focused on introducing various external stimuli to modify the OER process.
View Article and Find Full Text PDFHepatol Commun
February 2025
Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China.
Efficient and stable nonprecious metal-based oxygen evolution reaction (OER) electrocatalysts are pivotal for water electrolysis technology. Herein, we are reporting an effective strategy for fabricating efficient Co-based OER electrocatalysts by low-level Fe doping in CoMoO to boost surface reconstruction and electronic modulation, which resulted in excellent OER electroactivity consequently. Our findings reveal that a mere 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!