Prediction of the effective thermal conductivity of packed bed with micro-particles for thermochemical heat storage.

Sci Bull (Beijing)

Key Laboratory of Power Machinery and Engineering of Ministry of Education, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Published: February 2017

The heat transfer property of the powder bed greatly affects the performance of a thermochemical heat storage system. Therefore, an accurate evaluation of effective thermal conductivity (ETC) is a key for developing thermochemical heat storage systems. This paper focuses on the ETCs of commonly used porous thermochemical materials, such as MgO/Mg(OH) and CaO/Ca(OH) powders, as well as the corresponding composites with embedded metal foams. Random sphere-like particles packing (RSPP) method is proposed to reconstruct the microstructures of the powder and micro-scale generation method and computed tomography are adopted for the metal foams. Energy transport equations through porous media are solved by the lattice Boltzmann method (LBM) to obtain ETC. Results obtained using RSPP-LBM method agree with experimental data better than other existing methods. For thermochemical heat storage, the variation of ETC during chemical reactions is numerically predicted. Metal foam-embedded thermochemical materials are also studied to evaluate the enhancing effects of the metal foams. Results show that ETC of the powders is dominated by the gas phase, whereas that of the metal foam composites is dominated by the metal phase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2016.12.009DOI Listing

Publication Analysis

Top Keywords

thermochemical heat
16
heat storage
16
metal foams
12
effective thermal
8
thermal conductivity
8
thermochemical materials
8
thermochemical
6
metal
6
heat
5
prediction effective
4

Similar Publications

Computing Entropy for Long-Chain Alkanes Using Linear Regression: Application to Hydroisomerization.

Entropy (Basel)

December 2024

Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.

Entropies for alkane isomers longer than C are computed using our recently developed linear regression model for thermochemical properties which is based on second-order group contributions. The computed entropies show excellent agreement with experimental data and data from Scott's tables which are obtained from a statistical mechanics-based correlation. Entropy production and heat input are calculated for the hydroisomerization of C isomers in various zeolites (FAU-, ITQ-29-, BEA-, MEL-, MFI-, MTW-, and MRE-types) at 500 K at chemical equilibrium.

View Article and Find Full Text PDF

Heterogeneous reactions in a HFCVD reactor: simulation using a 2D model.

Beilstein J Nanotechnol

December 2024

Centro de Investigaciones en Dispositivos Semiconductores (CIDS-ICUAP), Benemérita Universidad Autónoma de Puebla (BUAP). Col. San Manuel, Cd. Universitaria, Av. San Claudio y 14 sur, Edif. IC5 y IC6. Puebla, Pue., 72507 México.

In this study, a simulation of the elementary chemical reactions during SiO film growth in a hot filament chemical vapor deposition (HFCVD) reactor was carried out using a 2D model. For the 2D simulation, the continuity, momentum, heat, and diffusion equations were solved numerically by the software COMSOL Multiphysics based on the finite element method. The model allowed for the simulation of the key parameters of the HFCVD reactor.

View Article and Find Full Text PDF

Bamboo is a fast-growing lignocellulosic plant in nature. It is an abundant and renewable resource with wide applications. The processing of bamboo results in a large amount of residue.

View Article and Find Full Text PDF

Machine-Learning-Enabled Thermochemistry Estimator.

J Chem Inf Model

January 2025

Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States.

Modeling adsorbates on single-crystal metals is critical in rational catalyst design and other research that requires detailed thermochemistry. First-principles simulations via density functional theory (DFT) are among the prevalent tools to acquire such information about surface species. While they are highly dependable, DFT calculations often require intensive computational resources and runtime.

View Article and Find Full Text PDF

3D Ordered Macroporous Mn, Zr-Doped CaCO Nanomaterials for Stable Thermochemical Energy Storage.

Adv Sci (Weinh)

December 2024

State Key Lab of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China.

Developing high-performance Ca-based materials that can work for long-term heat transfer and storage in concentrated solar power plants is crucial to achieve the large-scale conversion of solar photon fluxes to dispatchable electricity. This work demonstrates that a series of Mn, Zr co-doped CaCO nanomaterials with the 3D ordered macroporous (3DOM) skeletons are successfully prepared by a novel strategy of templated metal salt co-precipitation. The characterization results indicate that a majority of Zr and Mn are atomically dispersed into the highly-crystallized CaCO framework, whereas a minor amount of Mn is present in the form of CaMnO nanoparticles (NPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!