A combined DFT and molecular dynamics study of U(VI)/calcite interaction in aqueous solution.

Sci Bull (Beijing)

Laboratory of Nuclear Energy Chemistry, and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: August 2017

Here we present a combined DFT and molecular dynamics study of uranyl (U(VI)) interaction mechanisms with the calcite (104) surface in aqueous solution. The roles of three anion ligands (CO, HCO, OH) and solvation effect in U(VI) interaction with calcite have been evaluated. According to our calculations, water adsorbed on the calcite (104) surface prefers to exist in molecular state rather than dissociative state. Energy analysis indicate that the positively charged uranyl species prefers to form surface complexes on the surface, while neutral uranyl species may bind with the surface via both surface complexing and ion exchange reactions of U(VI)→Ca(II). In contrast, the negatively charged uranyl species prefer to interact with the surface via ion exchange reactions of U(VI)→Ca(II), and the one with UO(CO)(HO) as the reactant becomes the most favorable one in energy. We also found that uranyl adsorption increases the hydrophilicability of the (104) surface to different extents, where the UO(CO)Ca species contributes to the largest degree of energy changes (-53kcal/mol). Our calculations proved that the (104) surface also has the ability to immobilize U(VI) via either surface complexing or ion exchange mechanisms under different pH values.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2017.07.007DOI Listing

Publication Analysis

Top Keywords

104 surface
16
uranyl species
12
ion exchange
12
surface
10
combined dft
8
dft molecular
8
molecular dynamics
8
dynamics study
8
aqueous solution
8
uvi interaction
8

Similar Publications

Research of mesoporous silica loaded lignin to enhance the anti-corrosion and anti-weathering performance of epoxy surface.

Int J Biol Macromol

January 2025

Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China. Electronic address:

A new type of filler was added to epoxy resin to prepare a composite coating with excellent corrosion and weathering resistance. The simple synthesis process and nonpolluting raw materials of this filler contribute to the development of green chemistry. Specifically, lignin was encapsulated in mesoporous silica, the synergistic effect between the two resulted in the formation of lignin/mesoporous silica composite particles (MSN-L) with excellent ultraviolet (UV) resistance.

View Article and Find Full Text PDF

Mesoporous bioactive glass (MBG) is an advanced biomaterial widely recognized for its application in bone regenerative engineering. This study synthesized an MBG powder (80 mol% SiO, 5 mol% PO, and 15 mol% CaO) using a facile sol-gel method with the non-ionic surfactant Pluronic P123, which acted as a pore-forming agent. MBGs form bioactive surfaces that facilitate HA formation, and the presence of Pluronic P123 increases the surface area and promotes HA nucleation.

View Article and Find Full Text PDF

Aiming toward a novel, noninvasive technique, with a real-time potential application in the monitoring of the complexation of steroidal neuromuscular blocker drugs Vecuronium () and Rocuronium () with sugammadex (, medication for the reversal of neuromuscular blockade induced by or in general anesthesia), we developed proof-of-principle methodology based on surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles prepared by the reduction of silver ions with hydroxylamine hydrochloride were used as SERS-active substrates, additionally aggregated with calcium nitrate as needed. The and SERS spectra were obtained within the biorelevant 5 × 10-1 × 10 M range, as well as the SERS of , though the latter was observed only in the presence of the aggregating agent.

View Article and Find Full Text PDF

Which Positions Optimize Pelvic Floor Activation in Female Athletes?

Life (Basel)

January 2025

Physiotherapy and Health Research Group (FYSA), Department of Physiotherapy, Faculty of Health Sciences-HM Hospitals, University Camilo José Cela, Villanueva de la Cañada, 28692 Madrid, Spain.

Background/objectives: Implementing and optimizing pelvic floor muscle (PFM) training programs is crucial for reducing the risk of dysfunctions, improving athletic performance, and enhancing quality of life for athletes. The aim of this study was to assess PFM activation in female athletes during postural challenges.

Methods: An observational and descriptive study was conducted with twenty-five female rugby players.

View Article and Find Full Text PDF

A Carbon Nanotube Transistor Based on Buried-Gate Structure.

Materials (Basel)

January 2025

School of Microelectronics and Artificial Intelligence, Kaili University, Kaili 556011, China.

From the discovery of carbon nanotubes to the ability to prepare high-purity semiconductor carbon nanotubes in large quantities, the large-scale fabrication of carbon nanotube transistors (CNT) will become possible. In this paper, a carbon nanotube transistor featuring a buried-gate structure, employing an etching process to optimize the surface flatness of the device and enhance its performance, is presented. This CNT thin-film transistor has a current switching ratio of 10, a threshold voltage of around 1 V, and a mobility that can reach 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!