Enhanced CO catalytic oxidation by Sr reconstruction on the surface of LaSrCoO.

Sci Bull (Beijing)

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:

Published: May 2017

Surface electronic structure of solid materials plays a critical role in heterogeneous catalysis. However, surface chemical composition of the perovskite oxides is usually dominated by segregated A-site cations and the amount of oxygen vacancies is relatively low, which seriously restricts their catalytic oxidation property. Here, we prepare perovskite LaSrCoO (x=0.3, 0.5, 0.7) with different Sr doping amount and experiment results show that perovskite LSCO with higher content of surface Sr possesses more oxygen vacancies and better catalytic activity. On this basis, we develop a new experimental strategy to create more surface oxygen vacancies to promote their CO catalytic activity. In this method, we use high active hydrogen atoms (BH) as reductant to realize surface in-situ chemical composite modification of LaSrCoO (x=0.3, 0.5, 0.7), which causes their surface reconstruction (surface Sr enrichment). The regulation mainly focuses on the atomic layer level without damaging their bulk phase structure. Different from traditional high temperature annealing under reducing atmosphere, this method is high-efficiency, green and controllable. Furthermore, we study the surface reconstruction process and demonstrated that it is atomic layer engineering on the surface of LaSrCoO (x=0.3, 0.5, 0.7) by X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS). Our experiment results also show that these samples treated by this method exhibit superior activity for CO oxidation compared with original samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2017.03.017DOI Listing

Publication Analysis

Top Keywords

oxygen vacancies
12
lasrcoo x=03
12
surface
10
catalytic oxidation
8
reconstruction surface
8
surface lasrcoo
8
catalytic activity
8
surface reconstruction
8
atomic layer
8
enhanced catalytic
4

Similar Publications

Enhancing the ferroelectric performance of HfZrOfilms by optimizing the incorporation of Al dopant.

Nanotechnology

January 2025

School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xianning West Road No.28 Xi'an Shannxi Province, Xi'an, Shaanxi, 710049, CHINA.

HfO-based ferroelectric (FE) thin films have gained considerable interest for memory applications due to their excellent properties. However, HfO₂-based FE films face significant reliability challenges, especially the wake-up and fatigue effects, which hinder their practical application. In this work, we fabricated 13.

View Article and Find Full Text PDF

Lead halide perovskite heterojunctions have been considered as important building blocks for fabricating high-performance photodetectors (PDs). However, the interfacial defects induced non-radiative recombination and interfacial energy-level misalignment induced ineffective carrier transport severely limit the performance of photodetection of resulting devices. Herein, interfacial engineering with a spin-coating procedure has been studied to improve the photodetection performance of CHNHPbI/SnO heterojunction PDs, which were fabricated by sputtering a SnO thin film on ITO glass followed by spin-coating a CHNHPbI thin film.

View Article and Find Full Text PDF

Sensitive H sensors play key roles in the large-scale and safe applications of H. In this study, we developed novel ternary Pd-loaded SnO@WO core-shell structures by hydrothermal and reduction methods. The compositions of the optimized ternary core-shell structures (Pd-SW-2) are prepared on the basis of the optimal binary core-shell structures (SW-X) according to the sensing performances to H.

View Article and Find Full Text PDF

Kirkendall Effect-Mediated Transformation of ZIF-67 to NiCo-LDH Nanocages as Oxidase Mimics for Multicolor Point-of-Care Testing of β-Galactosidase Activity and .

Anal Chem

January 2025

Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P. R. China.

Early and portable detection of pathogenic bacteria is crucial for ensuring food safety, monitoring product quality, and tracing the sources of bacterial infections. Moving beyond traditional plate-culture counting methods, the analysis of active bacterial components offers a rapid means of quantifying bacteria. Here, metal-organic framework (MOF)-derived NiCo-layered double hydroxide nanosheets (LDHs), synthesized via the Kirkendall effect, were employed as highly effective oxidase mimics to generate reactive oxygen species (ROS).

View Article and Find Full Text PDF

Expansion counteraction effect assisted vanadate with rich oxygen vacancies as a high cycling stability cathode for aqueous zinc-ion batteries.

Phys Chem Chem Phys

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering and School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

In this study, a novel tunnel structure vanadate NaVO (NaVO) cathode for aqueous zinc ion batteries (AZIBs) is facilely fabricated by thermal decomposition of polyoxovanadate containing NH ions. The NaVO cathode is characterized by abundant oxygen vacancies and nanometer dimensions. These attributes can offer extra reaction sites and suppress structural collapse during circulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!