Vertically aligned NiS/CoS/MoS nanosheet array as an efficient and low-cost electrocatalyst for hydrogen evolution reaction in alkaline media.

Sci Bull (Beijing)

Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: March 2020

Recently, the rational design of non-precious metal electrocatalysts for highly efficient hydrogen evolution reaction (HER) in alkaline media has received considerable interests in sustainable and renewable energy researches. Herein, vertically aligned and interconnected NiS/CoS/MoS nanosheet arrays on Ni foam were prepared by a two-step procedure that conducted by the hydrothermal synthesis of Ni-Co molybdate nanosheet array as the precursor and followed by the vapor phase sulfurization to achieve in situ conversion. Basing on the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations, it can be found that the honeycomb-like structure of the Ni-Co molybdate nanosheet array was well preserved after the sulfurization process. The high-resolution TEM (HRTEM) characterization reveals that the NiS/CoS/MoS nanosheet array provided abundant well-exposed active edge sites and multiple heterointerfaces towards enhanced alkaline HER performance. Electrochemical studies demonstrated that the ultrathin NiS/CoS/MoS nanosheets exhibited excellent HER performance with an overpotential of 112 mV at 10 mA cm and a smaller Tafel slope of 59 mV dec in comparison with NiS/MoS (155 mV and 89 mV dec) and CoS/MoS (124 mV and 75 mV dec) samples by taking the advantage of the well-exposed multiple heterointerfaces. This work presents a facile and reliable synthetic strategy for the rational design of highly efficient electrocatalysts for the HER in alkaline solution based on non-precious metal sulfide nanocomposite.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2019.12.003DOI Listing

Publication Analysis

Top Keywords

nanosheet array
16
nis/cos/mos nanosheet
12
vertically aligned
8
hydrogen evolution
8
evolution reaction
8
reaction alkaline
8
alkaline media
8
rational design
8
non-precious metal
8
highly efficient
8

Similar Publications

Electrochemical nitrite (NO) is a promising technology for NO removal and a sustainable method for generating valuable ammonia (NH), but this process is intricate and generates other byproducts. In this work, we propose a facile and low-cost method for the preparation of a CuMoO nanosheet array, which can serve as an efficient electrocatalyst for the reduction of NO to NH. The morphology of CuMoO can be adjusted by controlling the synthesis conditions.

View Article and Find Full Text PDF

Rational regulation of active hydrogen (*H) behavior is crucial for advancing electrocatalytic nitrate reduction reaction (NO3RR) to ammonia (NH3), yet in-depth understanding of the *H generation, transfer, and utilization remains ambiguous, and explorations for *H dynamic optimization are urgently needed. Herein we engineer a Ni3N nanosheet array intimately decorated with Cu nanoclusters (NF/Ni3N-Cu) for remarkably boosted NO3RR. From comprehensive experimental and theoretical investigations, the Ni3N moieties favors water dissociation to generate *H, and then *H can rapidly transfer to the Cu via unique reverse hydrogen spillover mediating interfacial Ni-N-Cu bridge bond, thus increasing *H coverage on the Cu site for subsequent deoxygenation/hydrogenation.

View Article and Find Full Text PDF

Nickel disulfide (NiS) nanoparticles are encapsulated within nitrogen and sulfur co-doped carbon nanosheets, which are grown onto carbon nanofibers to form an array structure (NiS/C@CNF), resulting in a self-supporting film. This encapsulated structure not only prevents the agglomeration of NiS nanoparticles, but also memorably buffers its volume changes during charge/discharge cycles, thereby maintaining structural integrity. The nitrogen and sulfur co-doping enhances electronic conductivity and facilitates the faster ion transport of the carbon backbone, improving the low conductivity of the NiS/C@CNF anodes.

View Article and Find Full Text PDF

An Optoelectronic Sensing Real-Time Glucose Detection Film Using Photonic Crystal Enhanced Rare Earth Fluorescence and Additive Manufacturing.

Small

January 2025

State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.

In this research, a novel detection method employing rare-earth upconversion nanoparticle (UCNP) as the core, coated with MnO nanosheets is designed, which formed a color and fluorescence dual-responsive UCNP composite material, MnO-modified NaYF:Yb,Tm@NaYF. By enabling both colorimetric and fluorescence methods simultaneously, this composite material allows for the detection of glucose concentration under different conditions, while exhibiting strong resistance to environmental interference, chemical stability, and accuracy. To further enhance the sensitivity of the detection method, a photonic crystals (PCs)-PDMS array where polymethyl methacrylate PCs are deposited onto a substrate composed of PDMS-glass slice with hydrophobic surfaces is developed.

View Article and Find Full Text PDF

Electrooxidation of 5-Hydroxymethylfurfural via NiP-NiSe Heterostructure Nanosheet Arrays.

Inorg Chem

January 2025

Zhejiang Carbon Neutral Innovation Institute and Moganshan Institute of ZJUT at Deqing, Zhejiang University of Technology, Hangzhou 310014, China.

The electrooxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) has been deeply investigated. However, developing a durable electrocatalyst for fast production of FDCA at low potentials remains a challenge. Herein, we report NiP-NiSe heterostructure nanosheet arrays as efficient electrocatalysts for HMF electrooxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!