Metal halide perovskite light emitting diodes (PeLEDs) have recently experienced rapid development due to the tunable emission wavelengths, narrow emission linewidth and low material cost. To achieve state-of-the-art performance, the high photoluminescence quantum yield (PLQY) of the active emission layer, the balanced charge injection, and the optimized optical extraction should be considered simultaneously. Multiple chemical passivation strategies have been provided as controllable and efficient methods to improve the PLQY of the perovskite layer. However, high luminance under large injection current and high external quantum efficiency (EQE) can hardly be achieved due to Auger recombination at high carrier density. Here, we decreased the electron injection barrier by tuning the Fermi-level of the perovskite, leading to a reduced turn on voltage. Through molecular doping of the hole injection material, a more balanced hole injection was achieved. At last, a device with modified charge injection realizes high luminance and quantum efficiency simultaneously. The best device exhibits luminance of 55,000 cd m, EQE of 8.02% at the working voltage of 2.65 V, current density of 115 mA cm, and shows EQE T stability around 160 min at 100 mA cm injection current density.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2020.06.024 | DOI Listing |
Inorg Chem
January 2025
College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, P.R. China.
Phosphors with broadband green emission are highly desirable for the construction of high-color-rendering warm-white light-emitting diode (LED) devices toward healthy solid-state lighting applications. However, most of the reported green phosphors are subject to an undesirable emission bandwidth and low quantum efficiency. Here, a highly efficient broadband green-emitting garnet phosphor, CaLuScAlSiO:Ce (CLSASO:Ce), is successfully synthesized and investigated in detail.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.
Perceptual adaptation has been widely used to infer the existence of numerosity detectors, enabling animals to quickly estimate the number of objects in a scene. Here, we investigated, in humans, whether numerosity adaptation is influenced by stimulus feature changes as previous research suggested that adaptation is reduced when the colour of adapting and test stimuli did not match. We tested whether such adaptation reduction is due to unspecific novelty effects or changes of stimuli identity.
View Article and Find Full Text PDFDoc Ophthalmol
January 2025
Department of Ophthalmology and Visual Sciences, Research Institute of the McGill University Health Centre/Montreal Children's Hospital, 1001 Décarie Boulevard, Glen Site, Block E, Office #EM03238, Montréal, QC, H4A 3J1, Canada.
Purpose: Study the scotopic oscillatory potentials (OPs) in mice over a wide range of flash luminance levels using the Hilbert transform (HT) to extract new features of the high frequency components of the electroretinogram (ERG).
Methods: Scotopic ERGs [Intensity: - 6.3 to 0.
Sci Rep
January 2025
College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, China.
Utilizing aerosol jet printing (AJP), this study achieves a breakthrough in fabricating luminescent fibers with superior optical performance and flexibility. The YO:Eu coated high silica glass fibers demonstrate luminous efficiency twice that of traditional methods, retaining 80% after 250 bending cycles and 90% after sweat immersion. This AJP technique not only elevates the potential of smart fabrics but also represents a significant innovation in lighting technology, providing new ideas for advanced functional fiber fabrication.
View Article and Find Full Text PDFThe James Webb Space Telescope has discovered a surprising population of bright galaxies in the very early Universe (≲500 Myr after the Big Bang) that is hard to explain with conventional galaxy-formation models and whose physical properties are not fully understood. Insight into their internal physics is best captured through nebular lines, but at these early epochs, the brightest of these spectral features are redshifted into the mid-infrared and remain elusive. Using the mid-infrared instrument onboard the James Webb Space Telescope, here we present a detection of Hα and doubly ionized oxygen ([O iii] 4959,5007 Å) from the bright, ultra-high-redshift galaxy candidate GHZ2/GLASS-z12.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!